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Abstract— This paper proposes a nonlinear programming
(NLP) formulation intended for the trajectory optimization of
legged robot jumping applications during the stance phase,
taking into consideration the detailed robot model, actuator
capability, terrain condition, etc. The method is applicable to a
wide class of jumping robots and was successfully implemented
on an articulated robotic leg for jumping in terms of maximum
reachable height, minimum energy consumption, as well as
optimum energy efficiency. The simulation and experimental
results demonstrate that this approach is capable of not only
planning one single jumping trajectory, but also designing a
periodic jumping gait for legged robots.

I. INTRODUCTION

Legged robots, despite of increased complexity and power
consumption compared with other types of mobile robot,
have the potential to exert a much larger influence to human
environments in the future. The articulated limbs provide
them with the inimitable possibility of going anywhere a
human can go and doing anything a human can do. While
progress has been made, legged robots are only beginning to
fulfill this great potential.

Traditionally, legged robots are realized with hydraulic
actuators for producing tremendous magnitude of force [1],
[2]. However, their energy efficiency is limited and the
actuation system is often large and difficult to install [3],
[4]. Later, legged robots are equipped with electromagnetic
(EM) actuators with large gear ratio in order to achieve
high torque density [5]. Nevertheless, these heavily geared
motors, specifically designed to perform accurate position-
controlled tasks in fairly structured environments, are quite
vulnerable when faced with significant ground impact for
legged locomotion, due to increased reflected inertia and
gear friction from the gearbox [6]. Recently, more advanced
legged robots have been developed which are capable of
dynamic locomotion over irregular terrain with the help of
series elastic actuators (SEA) [7], [8]. SEAs are utilized to
mitigate the ground impact by intentionally adding controlled
variable mechanical impedance in series with an actuator
[9]. However, their force bandwidth is limited [10], [11].
In addition, these legged systems with added mechanical
impedance usually result in complex dynamics, making them
difficult to control at best and restricted in their capabilities
at worst. Lately, impressive advances in EM technology, i.e.,
direct-drive [6] and quasi-direct-drive motors [12], [13], [14],
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have demonstrated that they are capable of producing suffi-
cient torque and speed for legged robot dynamic locomotion
without high gearing [15], [16]. This leads to the benefit of
high transparency and mechanical performance [6], which
enables accurate modeling and control of legged systems
with straightforward torque inputs. In this paper, we will
only focus on legged robots with this type of actuator.

The capability of jumping motions is one of the main
characters distinguishing legged robots from other types of
mobile robot, which has been extensively studied for several
decades. Raibert and Brown developed a one-legged hopping
machine with springy leg of telescopic type and realized
a hopping gait with an empirical controller [2]. Using a
similar controller, Hyon and Mita designed another one-
legged hopping robot that had an articulated leg composed of
three links [17]. A leg spring was further utilized not only to
enhance energy efficiency but also to absorb large impulse at
touch-down. Arikawa and Mita proposed a practical motion
planning method for jumping motions of multi-degree-of-
freedom jumping robot on the basis of the boundary state
at take-off and verified it with simulation of normal jump as
well as somersault [18]. Hutter et al. employed an operational
space controller to impose the behavior of the spring loaded
inverted pendulum (SLIP) model on an articulated robotic
leg, which was then capable of continuous hopping on
uneven ground [19].

Though many legged systems have been shown to be
capable of jumping motions, not until recent the mathe-
matical optimization technique is applied to optimize the
control strategy for some specific jumping tasks. Lim et
al. reduced the jumping trajectory optimization of biartic-
ular legged robots to a parameter optimization problem by
parameterizing the joint trajectory in terms of B-splines
[20]. However, joint torque cannot be constrained directly
but using a penalty function and ground friction was not
considered. Hiasa et al. used a similar parameterization for
each joint as reference and were able to constrain joint
torque directly with their nonlinear optimization simulation
approach [21]. However, the optimized joint torque was
computed from a PD controller by following the parame-
terized joint reference, which was far from the ideal values.
Ding and Park proposed a sequential nonlinear optimization
process that simultaneously solved for optimal control input
as well as chose mechanical design parameters specifically
for single robotic leg jumping task [22]. Nonetheless, the leg
was modeled as a simple point mass at the base with ground
reaction force (GRF) as input and thus the experimental
results deviated from the optimized results largely. Without
considering ground friction, slippage happened during the
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Fig. 1. Examples of 2D legged robot. On the left is the single leg model; in
the middle is the simplified biped model; and on the right is the simplified
quadruped model. The world frame is in red.

experiment. Besides, the optimized results were conservative
by enforcing initial GRF to zero. Nguyen et al. presented a
different nonlinear optimization method for quadruped robots
and successfully implemented it on the MIT Cheetah 3 [23].
Nevertheless, the purpose of their cost function is more like
to find a feasible solution than to optimize the jumping
performance. Besides, only one single jump is considered.

Inspired by the previous work, this paper proposes a
nonlinear programming (NLP) formulation intended for the
trajectory optimization of legged robot jumping applications
during the stance phase, taking into account the detailed
robot model, actuator capability, terrain condition, etc. The
method was successfully tested on an articulated robotic
leg not only for optimizing one single jumping trajectory
but also for designing a periodic jumping gait. The rest
of this paper is organized as follows. Section II describes
the legged robot model of interest. Section III details the
trajectory optimization algorithm for legged robot jumping
applications via an NLP formulation. Section IV illustrates
the proposed method with a single degree-of-freedom (DOF)
robotic leg for vertical jumping. Section V illustrates the
proposed method with a two DOF robotic leg for jumping
gait design. Section VI concludes the paper.

II. ROBOT MODEL

In this paper, we focus on optimizing jumping trajec-
tory (during the stance phase right before take-off) for an
articulated robotic leg on the sagittal plane. However, the
proposed method can be generalized to a wide class of
legged robots, as shown in Fig. 1. Define the vector of
generalized coordinates q =

[
x,z,α,θT

]T , where x, z, α are
the body position and angle, and θ is the joint position vector
including both actuated joints θa and passive joints θp. The
equations of motion take the form:

M(q)q̈+C(q, q̇) =Bτ +J(q)Td, (1)

where M(q) stands for the inertia matrix, the vector C(q, q̇)
captures the Coriolis, centrifugal, and gravitational forces,
B defines how the actuation torques τ enter the model, and
the Jocabian matrix J(q) transforms external forces d into
generalized forces. We can convert (1) into its state-space
form for the sake of NLP formulation:

ẋ= f(x,τ ,d), (2)

where the state x=
[
qT , q̇T

]T and

f(x,τ ,d) =

[
q̇

M(q)−1
(
Bτ +J(q)Td−C(q, q̇)

) ] .
(3)

Additionally, a kinematics constraint is further imposed to
fix each stance foot on the ground before take-off:

h(q) = p, (4)

where p describes the position of stance feet and

∂h(q)

∂q
= J(q). (5)

III. PROBLEM FORMULATION

This section illustrates how we formulate the optimization
of jumping trajectory to an NLP for legged robots. First of
all, a typical formulation for a mathematical optimization
problem can be written as follows:

minimize
z

c(z)

subject to φ(z) = 0,

ψ(z)≤ 0,

(6)

where z ∈Rn is the vector of decision variables, c : Rn→R
is the scalar objective function, φ : Rn→ Rm is the equality
constraint function, and ψ : Rn→ Rr is the inequality con-
straint function [24]. At least one of c, φ, and ψ needs to
be nonlinear to make (6) an NLP.

A. Decision Variables

The optimal jumping problem for legged robots is ini-
tially a continuous-time trajectory optimization problem.
To simplify the integration calculations involved, the direct
collocation method is used to discretize the trajectories at N
collocation points with even time intervals ∆t. We find that
trapezoidal collocation works well here since the duration
of stance T is really short for jumping. The set of decision
variables χ can first be defined as

χ := {q[k], q̇[k],τ [k],d[k]|k = 1, . . . ,N} , (7)

where q[k], q̇[k], τ [k], and d[k] are known as the collocation
points at time t[k] = (k− 1)∆t. To further ensure a smooth
and physically feasible profile, polynomials of order S are
used to parameterize τ and d, which gives

τ [k] =
S

∑
i=0
λit[k]i, d[k] =

S

∑
i=0
νit[k]i, k = 1, . . . ,N, (8)

where λi and νi are the vectors of coefficients for the
monomial of order i. Parameterization is not further applied
to the states q and q̇ because they are already subject to the
dynamics (1), which will end up with a smooth and feasible
trajectory if τ and d are nice functions. The set of decision
variables χ thus becomes

χ := {q[k], q̇[k]|k = 1, . . . ,N}∪{Λ,V } , (9)

where Λ = [λ0, . . . ,λS] and V = [ν0, . . . ,νS]. Note that the
total number of decision variables decreases if S < N−1.
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For different applications and interests, χ can also involve
decision variables such as the generalized acceleration q̈[k],
the duration of stance T , the position of stance feet p, the
motor gear ratio γ , the link length l, etc.

B. Objective Function

The jumping performance can be evaluated in many differ-
ent ways. For example, to maximize the maximum reachable
height hmax of the center of mass (CoM) after take-off, the
objective function c(χ) will be

c(χ) =−hmax =−zCoM[N]− żCoM[N]2

2g
, (10)

where g is the gravitational acceleration, zCoM[N] is the
height, and żCoM[N] is the vertical velocity component of
CoM at take-off. Both of them are functions of q[N] and
q̇[N]. In addition, when the leg dynamics is negligible
compared to the body, (10) can be simplified to

c(χ) =−z[N]− ż[N]2

2g
, (11)

where z[N] is the height and ż[N] is the vertical velocity
component of the body at take-off.

Another way to evaluate the jumping performance can be
energy consumption E when the goal height h is fixed. It can
be defined as the integral of the absolute mechanical power
of the actuators over the duration of stance T :

E :=
∫ T

0
|τ |T

∣∣∣θ̇a

∣∣∣dt, (12)

where θ̇a is the actuated joint velocity vector. The objective
function is further approximated as a summation

c(χ) =
N−1

∑
k=1

1
2

(
|τ [k]|T

∣∣∣θ̇a[k]
∣∣∣+ |τ [k+1]|T

∣∣∣θ̇a[k+1]
∣∣∣)∆t

= Ẽ. (13)

This approximation is done by applying the trapezoid rule for
integration between each adjacent pair of collocation points.
We can also combine (10) and (13) together with a tuning
weight to take both into consideration.

C. Constraints

1) Dynamics Constraint: It is applied between every ad-
jacent pair of collocation points using trapezoidal collocation
following [25]:

x[k+1]−x[k] = ∆t
2
(f [k+1]+f [k]) , k = 1, . . . ,N−1,

(14)

where f [k] = f (x[k],τ [k],d[k]) is the result of evaluating
the system dynamics at each collocation point. Additional
decision variable q̈[k] can be introduced to avoid calculating
the inverse of the inertia matrix in f .

0
c
/

max
/

Speed

max

T
o
rq

u
e

Fig. 2. A typical BLDC motor speed-torque curve scaled by gear ratio γ .

2) Kinematics Constraint: It is applied at each collocation
point according to (4) and (5):

h(q[k]) = p, k = 1, . . . ,N, (15)

which is the position kinematics constraint and

ḣ(q[k]) = J(q[k])q̇[k] = 0, k = 1, . . . ,N, (16)

which is the velocity kinematics constraint. If q̈[k] is also
involved as decision variable, a third acceleration kinematics
constraint needs to be imposed as well by taking further time
derivative of (16).

3) Motor Constraint: A typical brushless DC electric
motor (BLDC motor) speed-torque curve scaled by gear
ratio γ is shown in Fig. 2. Considering the combination of
both positive and negative values, the constraint on actuated
joint velocity and actuation torque can be formulated as the
following polyhedron at each collocation point:

I 0
−I 0
I γbI
−I γbI
I −γbI
−I −γbI


[
τ [k]
θ̇a[k]

]
≤


γτmax1
γτmax1
bωmax1
bωmax1
bωmax1
bωmax1

 , k = 1, . . . ,N,

(17)

where I is the identity matrix, 1 = [1, . . . ,1]T is of the same
length as τ [k] or θ̇a[k], and b = γτmax/(ωc−ωmax).

4) Friction Cone Constraint: It is applied for each stance
foot at each collocation point to prevent slippage:∣∣∣d( j)

x [k]
∣∣∣≤ µ

∣∣∣d( j)
z [k]

∣∣∣ , j = 1, . . . ,M, k = 1, . . . ,N, (18)

where d( j)[k] =
[
d( j)

x [k],d( j)
z [k]

]T
is the GRF acting on the

jth stance foot at the kth collocation point and µ is the
coefficient of friction between the stance foot and ground.
Since a stance foot cannot pull the ground, i.e., d( j)

z [k] ≥ 0
for all j and k, (18) is reduced to 0 −1

1 −µ

−1 −µ

[ d( j)
x [k]

d( j)
z [k]

]
≤ 0, j = 1, . . . ,M,

k = 1, . . . ,N. (19)
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If the ground is inclined, (19) can be further modified to 0 −1
1 −µ

−1 −µ

[ cosβ sinβ

−sinβ cosβ

][
d( j)

x [k]
d( j)

z [k]

]
≤ 0,

j = 1, . . . ,M, k = 1, . . . ,N, (20)

where β is the inclination angle.
5) Take-off Constraint: Some special constraints need to

be taken into consideration, which makes it different from
other types of trajectory optimization for legged robots. To
make sure the robot will jump (leave the ground) afterwards,
the last collocation point is considered as the moment of take-
off. That is, the GRF should be zero for each stance foot and
the CoM velocity component normal to the ground should
be positive at the last collocation point:

d( j)[N] = 0, j = 1, . . . ,M, (21)
−ẋCoM[N]sinβ + żCoM[N]cosβ ≥ 0. (22)

6) Other Constraints: Some other constraints can be
included on a case-by-case basis, such as the initial and
final configuration constraint, joint angle range constraint,
external force constraint, etc. In general, these constraints
can be formulated in a linear manner.

D. Complete Formulation

The complete NLP formulation of the jumping trajectory
optimization problem for legged robots is thus given by

minimize
χ

c(χ)

subject to Dynamics Constraint (14),
Kinematics Constraint (15)(16),
Motor Constraint (17),
Friction Cone Constraint (20),
Take-off Constraint (21)(22),
Other Constraints,

(23)

where the nonlinearity usually comes from the robot model,
i.e., (14), (15), and (16).

IV. EXAMPLE OF A SINGLE DOF ROBOTIC LEG

This section explores the optimal jumping problem for a
single DOF robotic leg via the NLP formulation.

A. Single DOF Robotic Leg Model

Fig. 3 shows the single DOF robotic leg model in detail.
The body with mass M is mounted on a vertical linear
guide with horizontal position x = xo. Its vertical position
is denoted as z. The femur and tibia links share the same
mass m, length l, and inertia J. The point foot is mounted
on another vertical linear guide with horizontal position p.
Therefore, the friction cone constraint is not considered here.
The only BLDC motor with gear ratio γ is mounted on the
body and the femur joint θ1 is actuated while the tibia joint
θ2 is passive. The equations of motion take the form as (1),
where q = [x,z,θ1,θ2]

T , Bτ = [0,0,τ,0]T , d = [dx,dz,dr]
T .

[dx,dz]
T is the GRF acted on the foot and dr is the external

Fig. 3. Single DOF robotic leg model. The world frame is in red. The two
linear giudes are shown by the dashed gray lines.

force exerted on the body by the linear guide in the x
direction. An extra constant friction term d f from the linear
guide in the z directional is also considered in the model.
The kinematics constraint (4) gives

h(q) =

 x+ l cosθ1 + l cos(θ1 +θ2)
z− l sinθ1− l sin(θ1 +θ2)

x

=

 p
0
xo

 , (24)

and the Jacobian matrix can be computed from (5) as

J(q) =

 1 0 −l (sinθ1 + sin(θ1 +θ2)) −l sin(θ1 +θ2)
0 1 −l (cosθ1 + cos(θ1 +θ2)) −l cos(θ1 +θ2)
1 0 0 0

 .
(25)

The robot parameters are listed in TABLE I.

TABLE I
ROBOT PARAMETERS

Symbol Parameter Value & Unit
M Body mass 0.88 kg
m Link mass 0.085 kg
l Link length 0.2 m
J Link inertia 4.3×10−4 kg·m2

τmax Maximum torque 0.42 N·m
ωc Cutoff speed 1755 rad/s

ωmax Maximum speed 1910 rad/s
γ Gear ratio 24

B. Maximum Reachable Height

To maximize the maximum reachable height hmax, the
NLP is formulated as follows

minimize
χ

Objective Function (11)

subject to Dynamics Constraint (14),
Kinematics Constraint (15)(16),
Motor Constraint (17),
Take-off Constraint (21)(22),
Other Constraints,

(26)

where the set of decision variables χ is defined as

χ := {q[k], q̇[k]|k = 1, . . . ,N}∪{Λ,V , p,T} . (27)
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Fig. 4. Visualization for NLP results of maximum reachable height. The
robotic leg starts at the bottom, pushes the ground, moves upward, and
eventually takes off for a vertical jump.

The foot position p and stance duration T are critical decision
variables for this problem; xo is really arbitrary and is set
to 0 for convenience; with constant friction from the two
linear guides, the gravitational acceleration g in (11) is
modified to g+ d f /(M + 2m); the friction cone constraint
is not considered but dz is still enforced to be nonnegative
all the time; the robotic leg is assumed to be static at the
beginning, which is formulated as an initial configuration
constraint; and the initial body height z[1] is imposed to be
greater than 3 cm to avoid physical interference with the
ground.

MATLAB’s fmincon function is used to solve (26) with
N = 15 and S = 5 for local optima. Fig. 4 visualizes the NLP
results. The NLP optimized value hmax is determined to be
1.066 m with optimized solution p = 8.09 cm, z[1] = 3.00
cm, and T = 93.7 ms. Fig. 5 compares the NLP results with
the simulation and experimental results for one vertical jump,
which are implemented with the same optimized joint torque
profile. The sequential screenshots of the experimental results
are shown in Fig. 6. The optimized torque curve implies
that the maximum reachable height is achieved when the
robotic leg pushes the ground as hard as possible, which
also makes sense in reality. Therefore, we can actually
verify the optimality using a simulation-based search with the
optimal control strategy (maximum torque) over all feasible
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Fig. 5. Comparison between NLP, simulation, and experimental results of
maximum reachable height. The optimized torque profile is implemented.
It is clear that the robot model information is well captured in the NLP.

combinations of p and z[1], which yields Fig. 7. The global
optima hmax = 1.109 m, which is achieved when p = 7.75
cm, z[1] = 3.00 cm, and T = 94.1 ms. The simulation results
indicate that the NLP optimized solution is very close to
the global optima of the continuous problem, which implies
the robot model information is well captured in the NLP.
Note that MATLAB’s ode45 function is used to simulate (1)
combined with double time derivative of (4), which gives[

M −J(q)T

J(q) 0

][
q̈
d

]
=

[
Bτ −C(q, q̇)

−J̇(q)q̇

]
(28)

with initial condition satisfying (4) and J(q)q̇ = 0. That is,
given the system state and input, the acceleration and external
force can be computed from (28).

C. Minimum Energy Consumption

To minimize the energy consumption E when the goal
height h is fixed (thus h is involved as an additional con-
straint), the NLP is formulated similar to (26) while the
objective function is changed to (13); the initial configuration
is fixed to be able to achieve the maximum reachable height
from Section IV-B, i.e., p = 8.09 cm (thus removed from
χ) and z[1] = 3.00 cm are enforced as additional constraints;
and the robotic leg still starts with zero state velocity. Fig. 8
shows the NLP optimized results for different goal heights.

Fig. 6. Screenshots of the experimental results for maximum reachable height with measured hmax = 1.08 m. (video link: https://youtu.be/U0KQwYinubk)

209



0.6

15

0.7

0.8

0.9

10

1

10

1.1

5
5

3 0

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Fig. 7. Simulation results of maximum reachable height under different
combinations of foot position p and initial body height z[1]. The global
optima hmax = 1.109 m with p = 7.75 cm and z[1] = 3.00 cm.

The blue line shows the optimized minimum energy con-
sumption at each goal height. It is a monotonically increasing
function over the given feasible domain, which makes physi-
cal sense. Furthermore, the idea of the dimensionless specific
mechanical cost of transport [26] is used as a measure of the
energy efficiency of the system over one vertical jump, which
is defined as

η =
Ẽ

(M+2m)g(h− z[1])
, (29)

where h− z[1] is the overall vertical distance traveled. The
red line in Fig. 8 tells that η is minimized when h is around
0.6 m, i.e., the most energy-efficient way of vertical jumping
is when the goal height is set to 0.6 m. We will later apply the
idea of η when designing optimum jumping gait for legged
robots in terms of energy efficiency.

V. EXAMPLE OF A TWO DOF ROBOTIC LEG

This section investigates the optimum jumping gait for a
two DOF robotic leg via the NLP formulation. A concept
diagram is shown in Fig. 9.

A. Two DOF Robotic Leg Model

The two DOF robotic leg model is almost the same as
the single one in Section IV-A but without the two linear
guides. In addition, both the femur and tibia joints are now
actuated. The equations of motion take the form as (1),
where q = [x,z,θ1,θ2]

T , Bτ = [0,0,τ1,τ2]
T , d = [dx,dz]

T .
The kinematics constraint (4) gives

h(q) =

[
x+ l cosθ1 + l cos(θ1 +θ2)
z− l sinθ1− l sin(θ1 +θ2)

]
=

[
p
0

]
, (30)

where the foot position p is now actually arbitrary and is
thus set to 0 for convenience. The Jacobian matrix can be
computed from (5) as

J(q) =

[
1 0 −l (sinθ1 + sin(θ1 +θ2)) −l sin(θ1 +θ2)
0 1 −l (cosθ1 + cos(θ1 +θ2)) −l cos(θ1 +θ2)

]
.

(31)
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1.8
Minimum Energy Consumption

Minimum Cost of Transport

Fig. 8. NLP results of minimum energy consumption for different goal
heights. The red line indicates the vertical jumping is most energy-efficient
when the goal height h is around 0.6 m.

B. Optimum Jumping Gait

We aim to design an optimum periodic jumping gait for
the two DOF robotic leg in terms of energy efficiency via
the NLP formulation. The set of decision variables χ is first
defined as

χ := {q[k], q̇[k]|k = 1, . . . ,N}∪{Λ,V ,T} . (32)

In spite of the constraints illustrated in Section III-C, some
other constraints need to be imposed to ensure periodicity of
the jumping gait. For simplicity, after take-off, the body of
the robotic leg is assumed to be a projectile without consid-
ering the leg dynamics during the flight phase. Therefore, the
relationship between the final configuration and the config-
uration just before touch-down (q− =

[
x−,z−,θ−1 ,θ−2

]T and
q̇− =

[
ẋ−, ż−, θ̇−1 , θ̇−2

]T ) is given by

ẋ[N] = ẋ− = vd , (33)(
ż−
)2− ż[N]2 = 2g

(
z[N]− z−

)
. (34)

(33) indicates a constant desired horizontal velocity vd < 0
throughout the flight phase while (34) determines the change
in vertical velocity component based on the height change.
By assuming an impulsive and perfectly plastic collision, the
touch-down impact model is formulated according to [27] as

M(q[1])
(
q̇[1]− q̇−

)
= J(q[1])Tξ, (35)

Fig. 9. One complete cycle of the 2 DOF robotic leg jumping gait. It
starts from the right after the touch-down impact, pushes the ground, takes
off, travels in the air, eventually lands, and completes the cycle. The world
frame is in red. The amber line describes the body trajectory.
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where the additional decision variable ξ is the impact force
from the ground to the foot, the initial generalized velocity
q̇[1] represents the velocity right after the impact and the
initial position q[1] is assumed to be invariant through the
impact, i.e., q[1] = q−. The two links are also assumed to
be able to already return to their initial configuration by the
end of the flight phase, i.e., θ̇

−
1 = θ̇

−
2 = 0.

To optimize the jumping gait in terms of energy efficiency,
the idea of cost of transport η is applied yet with modifica-
tions to (29), since the problem is now in two dimensions.
The total horizontal distance traveled ∆x for one jump can be
simply measured by the change in foothold on the ground,
which is given by

∆x = x[1]+ x f − x[N], (36)

where x[1]≥ 0, x[N]≤ 0 from Fig. 9, and

x f =−vd ·
ż[N]− ż−

g
, (37)

which is computed based on the projectile assumption of the
body during the flight phase. Therefore, η can be defined as

η =
Ẽ

(M+2m)g∆x
. (38)

The jumping height is not further considered because x f
already captures that information, i.e., given vd , ∆x will
increase if the height increases and vice versa. The NLP
is finally formulated as follows

minimize
χ , ξ

Objective Function (38)

subject to Dynamics Constraint (14),
Kinematics Constraint (15)(16),
Motor Constraint (17),
Friction Cone Constraint (19),
Take-off Constraint (21)(22),
Gait Constraint (33)(34)(35),
Other Constraints.

(39)

Fig. 10. Visualization for NLP results of optimum jumping gait. The
robotic leg starts from the right after the touch-down impact, pushes the
ground, travels to the left, and eventually takes off for the next jump.

MATLAB’s fmincon function is used to solve (39) with
vd = −1 m/s, µ = 1, β = 0, N = 15, and S = 5, yielding
the optimized jumping gait with η = 1.26, as shown in Fig.
10. The robotic leg starts from the right-hand side right after
the touch-down impact, pushes the ground, travels to the left,
and eventually takes off for the next jump. MATLAB’s ode45
function is used to verify the NLP results and the simulation
results are shown in Fig. 11. During the flight phase, a simple

Fig. 11. Simulation results of optimum jumping gait. Figure (a) visualizes
the critical moments in the simulation, e.g., touch-down, take-off, midpoint
during the flight phase. The amber, green, and brown lines describe the
trajectories of the robot body, CoM, and foot, respectively. Starting at the
origin, the robotic leg is able to complete four planned jumps to the left
before divergence. The rest figures compares the simulation results with the
NLP results for the first two jumps. The shaded area represents the stance
phase while the white area represents the flight phase. Figure (b) shows the
body velocity. The desired horizontal velocity vd =−1 m/s. The simulation
results validate the projectile assumption of the body during the flight phase.
Figure (c) shows the two joint angles. They are forced to follow a predefined
trajectory during the flight phase via a PD controller. Figure (d) shows the
actuation torques. The same torque profile is implemented in the simulation
as suggested by the NLP results. Figure (e) shows the ground reaction force.
The NLP results ensure that no slippage happens with µ = 1.
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joint level PD controller is implemented to drive the two links
to its desired configuration for the upcoming stance phase.
With only open-loop control during the stance phase, the
robotic leg is able to complete more or less four planned
jumps before divergence, which indicates the proposed NLP
formulation is good enough for designing periodic jumping
gait for legged robots.

VI. CONCLUSION

In this paper, a trajectory optimization algorithm specifi-
cally served for legged robot jumping applications during the
stance phase was presented in detail via a nonlinear program-
ming (NLP) formulation, in consideration of robot full-body
dynamics and kinematics, actuator capability, terrain condi-
tion, etc. The method is applicable to a wide class of jumping
robots and was successfully implemented on an articulated
robotic leg as an example. Optimized jumping trajectories
were investigated in terms of maximum reachable height,
minimum energy consumption, as well as optimum energy
efficiency. The simulation and experimental demonstrations
verify that this approach is capable of not only optimizing
one single jumping trajectory, but also designing a periodic
jumping gait for legged robots. In spite of initial guess and
local optima issues, the detailed robot model information,
i.e., dynamics and kinematics where the nonlinearity usually
comes from, is well captured in the NLP. For that reason, the
NLP results can be almost directly tested in the simulation
and experimental environments with desired outcomes. Our
future plan is to study optimum landing strategy for legged
robots after take-off.
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