Task Planning with Mixed-Integer Programming for Multiple Cooking
Task Using dual-arm Robot

June-sup Yi', Min Sung Ahn?, Hosik Chae?, Hyunwoo Nam?, Donghun Noh?, Dennis Hong?, Hyungpil Moon*

Abstract— This work proposes a task scheduling method
in an optimization framework with applications on a dual-
arm cooking robot in a controlled cooking environment. A
mixed-integer programming (MIP) framework is used to find
an optimal sequence of tasks to be done for each arm. The
optimization is fast and simple as a priori information about
the tasks to be scheduled reveal dependency and kinematic con-
straints between them which significantly reduces the problem
size as infeasible solutions are removed pre-optimization. The
optimization approach’s feasibility is validated on a series of
simulations and an in-depth scalability analysis is conducted
by changing the number of tasks to be done, the dishes to be
completed, as well as the locations where the tasks can be done.
Considering the unique configuration of the platform, analysis
on selecting the minimum time required tasks as opposed tasks
that will give the most flexibility to the other arm is also done.
An example is presented on a real set of tasks to show the
optimality of the solution.

I. INTRODUCTION

Traditionally, robotics have been successful in conducting
a limited set of tasks in a known, controlled environment
such as an assembly line or research laboratories. However,
the number of robots coming out of such environments are
growing by the day, with their purpose to automate many of
the mundane tasks that people are forced to do.

The most successful types have been mobile robots, where
iRobot’s Roomba [1] series of vacuum cleaning robots are
the epitome. There are also an increasing number of service
robots that can guide people in pre-defined environments or
assist people in carrying objects. More recently, we are also
witnessing an increase of robots with limbs (i.e. manipulators
and legged mobile platforms) which can do conduct much
more tasks because of their relatively closer resemblance to a
human’s anatomy [2]. However, despite the relative increase
in task versatility compared to their mobile counterparts,
these limbed robots are still not openly available because
of a combination of the maturity of the technology in an
unstructured environment, the need for it in the general
public, and the price point [3] [4].

*This research was supported by Woowa Brothers Corporation.

*This research was supported by the MOTIE(Ministry of Trade, Industry,
and Energy) in Korea, under the Fostering Global Talents for Innovative
Growth Program(P0008746) supervised by the Korea Institute for Advance-
ment of Technology (KIAT).

1Sungkyunkwan University, 2066 seobu-ro, Suwon-si, Jangan-gu,
Gyeonggi-do, Republic of Korea caro33@skku.edu

2Unive:rsity of California, Los Angeles, CA 90025, USA

*Corresponding Author, Sungkyunkwan University, 2066
seobu-ro, Suwon-si, Jangan-gu, Gyeonggi-do, Republic of Korea
hyungpil@skku.edu

ime
Left Arm [Task3 |

sks | [Left Arm | sks || Task 1 [

Right Arm MAE{T] [Tasko][Task8] Right Arm TSk] [Task 8
(@ (b)
Fig. 1. The environment of the robot and the process of concurrently

conducting different tasks with the two arms. (a) The robot conducting
Task 1 and Task 4 at the same time. (b) After time has elapsed, the robot
moves on to conduct Task 9 with Task 3 starting shortly after.

The success of these limbed robots in controlled environ-
ments is still encouraging, as it suggests that if the environ-
ment is somewhat controllable, many tasks that humans have
to repeatedly do, which are too complex for mobile robots but
can be done by one with arms or legs, could be automated.
One of them is cooking. If robots could cook, they could
possibly be the next Roomba as the kitchen environment is
not drastically changing and because, similar to cleaning, it
can be considered a mundane, repetitive task that alleviates a
potential burden to young people [5]. This belief is supported
by the relevant research and types of products that are being
published and showcased by researchers and companies.

For example, Miso Robotics’ [6] is selling manipulators
that can flip burgers or work a fryer in a dedicated envi-
ronment, successfully assisting human cooks with serving
more than 15,000 burgers and 31,000 Ibs of chicken tenders
in 2019 alone [7]. Samsung’s Bot Chef is able to prepare
ingredients, cook on a frying pan, grab sauces out of cabinets,
and generally assist another human with cooking [8]. LG’s
CLOi Kitchen Zone has a group of robots that can take orders
to cooking bowls of noodles and making coffee for customers
[9]. The general idea of automated cooking or robot-assisted
cooking is well-represented, but in these demonstrations, a
robot is given a single task to conduct at a time, which
is contrasting to what humans might consider “optimal.”
Human experience tells us that we concurrently conduct tasks
to minimize cooking time while still producing the same
output quality.

Cooking is a combination of planning, multi-tasking, and

ultimately using prospective memory to complete sub-goals
as well as the overall goal within a timeframe [10]. This
results in a meal that can be delivered quickly. To the
authors’ best knowledge, such concurrency and multi-tasking
exists at a minimal amount with the current culinary-related
robots. There are works such as [11] which attempts to
find an optimal starting time for cooking prior to delivery
to maximize the “freshness” of the dish. On a broader
scale in terms of task scheduling for robots, there are
mixed-integer and constraint programs that schedule tasks
for mobile robots, where each mobile robot has the full
capacity to perform all tasks [12] [13]. However, for a pair
of stationary manipulators, a combination of coupled joints
between the manipulators or the potential interference in the
workspace introduces additional complexities for the existing
solutions to be viable. There was also a study applying
Hierarchical Quadratic Programming (HQP) considering the
limitations from robot configuration such as joint limit and
singularity [14]. Our research differs in reducing the solving
time by reducing the size of decision variables through
preprocessing.

This work attempts to take a pioneering step in multi-
tasking for a cooking robot such that the previously men-
tioned components that make up cooking can be achieved to
ultimately minimize time while completing all the required
cooking tasks. Furthermore, unique kinematic constraints are
considered in the task selection, as the manipulators used
have less than 6 DOF (5 DOF and redundant) for economic
and kinematic advantages, which actually impose additional
difficulties in the scheduling. To tackle this unique problem,
an optimization framework is formulated using mixed-integer
programming to assign each arm of a two-armed robot to a
certain task at a given timeslot. A mixed-integer program
is formulated to ensure all tasks are completed by being
assigned a timeslot. Because the manipulators can concur-
rently conduct tasks at an order which optimizes for both
time and task flexibility, the robot can complete all the tasks
considerably faster than had it given its full attention to each
task in a “blocking” fashion. Multiple tests are conducted on
a different number of cooking scenarios with varying number
of dishes and tasks to complete at random locations to show
the effectiveness and the scalability of the approach.

Consequently, the main contributions of this work are the
following:

1) Formulation of an optimization problem that assigns
N (two in this work) manipulators discrete tasks at
each timeslot using mixed-integer programming.

2) Scalability analysis of the optimization problem which
reveals a relationship between the number of tasks,
dishes, and task locations when optimizing for time
and/or task flexibility, which results in a suggested
combination of tasks, dishes, and task locations.

This work is organized as follows. We initially pre-process
the solutions for the problem in Section [[] by eliminating
options that are certain to not be the solutions. The entire
framework is then explained in Section with the approach

Waist Axis (Yaw)

Shoulder Link -100°~100° Shoulder Axis (Yaw)

o -110°~110°
Waist Joint

Shoulder Joint (Yaw)

Shoulder Joint (Pitch) —--f» —————— Shoulder Axis (Pitch)

-180°~180°
Upper Arm Link —

==em---- Elbow Axis (Pitch)
Elbow Joint . -125°~125°

ForearmLink— \ 1). = @&eA\--—-- Wrist Axis (Pitch)

) -180°~180°
Wrist Joint (Pitch) <™~

Wrist Joint (Roll) /=

End Effector

Fig. 2. 3D CAD model of the dual-armed robot

validated in Section[[V] Section [V]concludes the paper while
introducing some future work.

II. PROBLEM PREPARATION

This section introduces the environment that the task
scheduling problem is applied to and inspects its circum-
stances which sheds insight into areas where pre-processing
of the ensuing optimization can be done.

A. Environment

The environment consists of an 11 degrees of freedom
(DOF) dual-armed robot, where there are 5 DOF per arm
with another revolute joint that couples the two arms at the
center of the body. Despite the redundancy of each arm,
becasue the arm is fully capable of pitch and roll motions,
it is a sufficient platform for cooking in a fixed area. In the
case that bi-manipulation is required, the coupling joint at the
body can be used. Around the dual-armed robot are shelves
on three sides with cooking appliances and ingredients ready
for use. The whole environment is shown in Fig. [T} and a
detailed 3D CAD Model of dual-armed robot and the angle
range of each joints are shown Fig. 2]

B. Problem Reduction

Prior to formulating the optimization problem that would
output tasks that are to be done by each arm, an analysis of
the environment and the problem at hand can help embed
good heuristics into the optimization such that the problem’s
complexity can be reduced. This is similar to how infeasible
solutions can be eliminated with good heuristics and in
essence, can be compared to tightening the bounds of a
constraint.

1) Task Dependency Constraint: In cooking especially,
order of operation is important. This means that there are
tasks that can only be executed after successfully completing
a preceding task. Therefore, when optimizing for a certain
set of tasks to be completed by each arm, a constraint that

TABLE I
AN EXAMPLE OF A TASKSET.

TNo. |1 2 3 4 5 6 7 8 9 10 11 12
DNo. [I T 1 I 1 1T 1T 2 2 2 2 2
[10 10 43 10 60 60 13 3 10 10 10 10
L 8 10 4 8 4 1 5 6 10 11 3 9
d No I 2 3 4 5 6 - & 9 10 11

D No 2 2 2 2 2 3 3 3 3 3 3
t 20 10 10 19 3 3 3 10 10 145 30
L 2 3 7 3 5 8 10 3 7 3 5

d No. 12 13 14 15 16 - 18 19 20 21 22

enforces dependency on the conclusion of another task is
necessary.

To effectively represent multiple characteristics of each
task, a hierarchical set called a taskset is defined.

Definition A taskset T is an 7 array of quadruples consisting
of D;, t;, L;, and d;, where T 1is the task, D is the dish, ¢
is the time required to complete 7, £ is the location where
the 7 can be done, and d is 7; that needs to be completed
before 7; can be started where i! = j. Note that all elements
of the quadruple are required except for d.

To elucidate what may seem to be an abstract idea, an
example is shown in Table [I} The taskset in the example is
information that is assumed to be available as in essence,
it is a tabular representation of the time, steps, and location
of tools required to prepare three dishes. For example, to
prepare dish #3 (D = 3), tasks 18, 19, 20, 21, 22, and 23
must be done in that order.

Going back to the task dependency constraint, without
optimization, it is clear that to successfully complete the
preparation of the three dishes, the first task that the robot
does must be either D = 1]/|2||3. While the intricacies
of a taskset could be completely embedded into a more
complex optimization program as constraints, because or-
der of operation (i.e. dependency) is a known, unchanging
information, it can be utilized to simplify the problem. In
the case with the selection of the first task to do, 20 out
of the 23 tasks are infeasible tasks to begin with, and even
indirectly including them as constraints of other constraints
would simply increase the solve time.

2) Kinematic Constraint: Depending on the platform, its
unique characteristics could also be leveraged to simplify the
optimization. In the case with the dual-arm robot, the most
efficient operation may be to always use both arms. However,
because of the coupling joint between the two arms as well
as the redundancy, there exists kinematic constraints that
must be included in the optimization, as depending on the
tasks, both arms may not be usable. Since the environment
is known, as well as the taskset, this a priori information can
again be used to eliminate constraints that are guaranteed to
be irrelevant.

Assuming that cooking materials, appliances, and tools
are placed at specific locations, it is possible to calculate
in advance whether an arm can reach those positions. If the
location is within the reachable workspace, the robot can

Fig. 3.

Deep fryer and reachablilty sphere

reach those places in most cases with one of the two arms.
However, when one arm is occupied, it is not guaranteed that
the other arm will also be able to reach a desired position
that it would have been able to reach had the other arm
been unoccupied. This problem which is introduced due to
the coupling of the two arms in the body joint acts as a
catalyst for pre-computing the entire reachable workspace
and building a hashtable like matrix called the Relation
Matrix.

One way to calculate the reachable workspace is to dis-
cretize the Cartesian space into smaller cubes and verify if
all points on a surface of a sphere inside the cube can be
reached [15]. However, for cooking tools such as a deep
fryer shown in Figure [3| because the point of interest is at
the handle of the tool, the amount of volume that needs to be
pre-computed for such a tool is in fact very small, reducing
the amount of computation required. For example, the yellow
spheres in Figure 3 represent the sphere inscribed in the cube
representing the handle to conduct the deep fryer task. The
blue lines through the sphere are the feasible orientations that
the robot can grasp the handle to lift the basket. This example
shows 10 possible locations between the two spheres. If the
reachability is computed for these points, the feasibility of
executing the task can also be known. Such information can
be encapsulated in a hashtable-like representation called the
Relation Matrix.

Definition A Relation Matrix My is a binary matrix where
the rows represent one arm’s capability to reach £; and the
columns represent the other arm’s capability to reach L;. If
there exists a non-zero element at Rys(m,n), then one arm
can reach £,,, while the other arm can also reach £,,.

As an example, Fig. [] shows a Relation Matrix that can
be built for £, Lo, L3, and L4. This example assumes that
the robot can perform the task as long as the end-effect can
reach the rectangular area. In Fig. 4] (a), when the left arm is
conducting a task at £, the right arm can reach Lo, L3, and
L4. However in Fig. E| (b) and (c), the right arm may reach
its joint limits or collide with the left arm when reaching for
a position such as Lo. This situation and incorporates the
kinematic and environmental constraints are mathematically
represented in a binary fashion as seen in Fig. [(d).

Observing Mg in the running example, when one of

L) 5 L L
Dﬁ\ o
Li \ Ly Ly ‘ La
o - "
Left : Location 1, Right : Location 3 Left : Location 3, Right : L‘ocation 1
Possible Cannot reach because of joint limit
(a (b
o o Right Arm
\ L1 L2 L3 L4
Yz, L£ifo 1 D 1
o Q. £ Eralo 011
ET% E L3 0 0 1
-l La[1 Ao o

Left : Location 3, Right : Location 2
Collision between two arms

Q : case (a),[: case (b), A: case (¢)

Relation matrix between two arms

(©) (d)

Fig. 4. Examples of tasks that may or may not be performed simulta-
neously with two arms. (a) Successful case (b) Fail case because of joint
limit (c) Fail case because of collision (d) Relation matrix

the arms are occupied, it is clear that the optimization
only needs to consider the locations that the other arm
can actually reach. Thus, the problem size can again be
reduced before the optimization is done as incorporating
the full constraints only complicates the problem while not
providing any meaningful guards. Note that unlike the pre-
processing from the dependency constraints, the Relation
Matrix continues to be used in the ensuing framework.

ITII. TASK SCHEDULING WITH MIXED-INTEGER
PROGRAMMING

This section proposes a task scheduling algorithm con-
sidering the unique constraints mentioned in section [[II The
overall algorithm is shown in Algorithm [I] Once a taskset,
T, such as the one shown in Table [[] is prepared, mixed-
integer optimization is conducted every timestep to determine
the next task for an idle arm until the algorithm exhausts
all the task. Because of the aforementioned pre-processing
steps taken to reduce the problem size (line f-line [I0), the
optimization can be solved faster, as is explained in Sec-
tion Section describes factors for designing an
appropriate objective function, and the resulting optimization
problem is formulated in Section After an optimal task
is selected, the task’s index is obtained (line @ and the
algorithm for the timestep ends.

A. Search Space Reduction

The search space can be cut down by realizing kinematic
and dependency constraints discussed in Section This
process reduces the size of the lists of tasks to search over,
v; and vy, and eventually the size of the decision vector, C,
allowing the optimization to be solved in shorter time.

This process is shown in line [Th-line [T0] of Algorithm [I]
Given task set, T, contains n tasks, and each task, 7;, has the
index of the related dish, D;, the required time, ¢;, the task
location, £;, and the index of prerequisite task, d; as shown
earlier in Table [

First, OCCUPY/() determines which arm is currently in use
and queries the location of the arm. Mg is Z™*™ matrix,
where m is the number of given locations. Mp takes the
locations of the arm, and determines possible locations the
idle arm can take. If both arm are in idle, the same procedure
is taken with randomly chosen one. Then, by taking next top-
priority tasks across the dishes, the dependency constraint
considered. Lastly, CHOICE(L, LR) calculates the number
of possible locations that the other arm would have in the
next time. This number works as the degree of flexibility as
described in item 2] of Section

B. Factors for the Objective Function

The following two factors are mainly considered to design
the objective function.

1) Required time for each task: If only one arm takes ex-
cessive amount of time and it is at a location that forces
the other arm to stay idle, this will cause extra time
to finish the entire list of dishes. Therefore, executing
tasks that require shorter time instances a preferable to
increase the odds of both arms concurrently working.

2) The degree of flexibility on task selection: When the
scheduler decide which task is an optimal for an
idle arm, it is preferable to consider the other busy
arm’s flexibility in selecting the next task. This would
promote concurrent execution of both arms in future.
In our formulation, the number of available locations
of tasks in the next optimization step for the other
busy arm is used as a measure of the degree of
flexibility. The measure is scored by CHOICES(L, LR)
in Algorithm 2] and summing up the possible number
of locations of My, which implies that the dependency
and kinematic constraints are also considered.

C. Mixed-Integer Formulation and Task Selection

To solve this assignment problem, a mixed-integer opti-
mization is formulated as shown in Equation (T).

arg max ac’ v, + (1 —a)elvy (la)
c

subject to ceZk, (1b)

01 <€ < gy, (Ic)

de=1 (1d)

1) Objective Function: The objective function comprises
two weighted terms. v; contains reciprocal of time required
of selected tasks and is a realization of Itemm vy is a vector
with the number of locations of tasks that the other arm can
take in the next optimization when corresponding task is
selected for this arm, and is a realization of Item 2l ¢ € Z*
is a the decision vector, and k is the number of potential tasks

already filtered as in Section [[lI-A] « is the relative weight
between the two objective terms. Section [[V] describes how
these weights affect the results.

2) Constraint: In this assignment problem, 1 is assigned
when the corresponding task is selected as the next optimal
task, 0 otherwise. Equation (Tb) and Equation constrain
each element of decision vector, ¢; 1, to be either 1 or 0.
Equation (Td) represents the constraint that there is only one
task to be selected as an optimal task.

Algorithm 1 Task Planning with MIP

1: T= {7;} = {(Di,ti,ﬂi,di)}
2: n < size of T;
3: while >0 ¢; > 0 do
4: Ir + Occupry()
5: for i=1 to n do
6: if ir = L or Ir = R then
7: TF + (ZT:L>?MR(£L,£i) ZMR(ﬂi,CR)
8: if d; has top priority and T'F = true then
9: v,.append(i); vi.append(1/t;);
10: v.append(CHOICES(L;, Ir))
11: else if [r = ¢ then
12: if d; has top priority then
13: v;.append(i); vi.append(1/t;);
14: if CHOICES(L;, L)) # 0 then
15: v.append(CHOICES(L;, L))
16: else
17: v¢.append(CHOICES(L;, R))
18: else
19: pass
20: find arg max ac’ v, + (1 — a)c’'v;
21: s;tszect oY C=1
22: ¢« cTy;
23: te < te —ts

Algorithm 2 Choice Options for Arm

1: procedure CHOICES(L, Ir)
2 m + size(MR)

3 if Ir = L then

4: SC <— Z:il MR(ﬁ, 7,)
5

6

7

else if [r = R then
sc+ Y.t Mg(i, L)
return sc

IV. VALIDATION TEST

In this section, the results from testing Algorithm [T] under
a series of test conditions are presented. These conditions
are generated in the following order:
1) With number of 7 as constant, ¢ and £ are randomized
following a normal distribution.
2) The size of My is modified according to the number
of L.
3) The elements of Mg are randomized to O or 1.

2000

s 100 Tasks|
== =200 Tasks|

300 Tasks
=== = 400 Tasks
——— 500 Tasks|

0.31
1600

1200

»
g
8

Average Loop Count
Normalized Average Count

400

0 0.2 0.4 0.6 0.8 1.0 0 02 04 0.6 0.8 1.0

a a
Number of Dishes : 10, Number of Locations : 100, Range of Time : 1~12 count
(@) (®)

1190 +

1170

1150 2=

I

1130

Average Loop Count
Average Loop Count

1110

0 02 04 06 08 10

a a
Number of Tasks : 300, Number of Locations : 100, ~ Number of Tasks : 100, Number of Dishes : 10,
Range of Time : 1~12 count Range of Time : 1~12 count
©
400 —mm8 ™— —]
- s
g 5]
8 |EmEEeeae——e)
o S
g 500 <
& i
| T =
< £
200 z
029 ‘
0 0.2 04 0.6 0.8 1.0 0 0.2 04 0.6 0.8 1.0
a a
Number of Tasks : 100, Number of Dishes : 10, Number of Locations : 100
© ®
Fig. 5. Validation test results. (a) Result when the number of tasks varies.

(b) Normalized result when the number of tasks varies. (¢) Result when the
number of dishes varies. (d) Result when range of the number of location
varies. (¢) Result when range of the number of time required varies. (f)
Normalized result when range of the number of time required varies.

4) Time to completion is determined by count, a number
indicative of how many times the loop was performed.
Thus, ts in Algorithm |I| becomes 1.

5) Number of D is decided and 7 is divided by the
number of D.

6) Number of 7 per D is also randomly set.

7) Dependency between 7 within a D is defined.

According to the above method, since the dependency is
naturally determined when the dish is decided, the result is
observed by changing the remaining four factors: the number
of tasks, dishes, range of locations, and time. After the
taskset is created, the results are observed by varying the
two factors from Section time o and flexibility 3
factors. The sum of « and 3 is 1, and « is incremented
from O to 1 in 0.1 steps. The optimization solver used is
MOSEK [16], running on a desktop computer with a CPU
of Intel Core i7 8700K @ 3.70GHz and 16GB of RAM at
1204.2MHz.

A. Variation of the number of tasks

The results when changing the number of tasks while all
other conditions are kept constant are presented in Fig. 3]
(a) and (b). Data were obtained from 20 tasksets, but with
variations in the number of tasks. The average and the

TABLE I
AVERAGE RUN-TIME OF EACH EXPERIMENTS.

Number of Task 100 200 300 400 500
Run-Time (s) 136.6 2792 4135 546.1 6834
Number of Dishes 10 20 30 40 50
Run-Time (s) 669.7 7134 766.2 831.8 905.5
Number of Locations 10 40 70 100
Run-Time (s) 1539 1439 1427 1533
Range of Time (cnt) 1~4 1~6 1~8 1~10 1~12
Run-Time (s) 1333 1354 1324 1386 1443

standard deviation are shown. In (a), as the number of tasks
increases, the total time taken increases, which is an expected
result. To seek a potential trend, the results were normalized
as seen in (b). In all results, there was no particular trend
for the change in « value.

B. Variation of the number of dish

The result when changing the number of dishes while
all other conditions were held constant are shown in Fig. [3]
(c). 20 tasksets are used, but with variations in the number
of dishes. The overall trend is that the larger the value of
«, the smaller the total time was consumed. An interesting
result was that as the number of dishes increases, the number
of loop counts decreases. The reason for this is that as the
number of dishes increases, the number of options that the
robot arm can choose increases, resulting in the rate at which
both arms can be used simultaneously.

C. Variation of the number of location

When creating a taskset, the location is randomly assigned.
In this case, the location is given randomly in a different
range and the results are compared. As the range increases,
the overall loop count tends to decrease. That is because size
of the relation matrix become also bigger. The larger the
size of the matrix, the higher the probability that the result
of the function in algorithm 2] will be larger. And unlike
other results, the larger the range, the greater the effect of
the flexibility factor. In Fig. [3] (d), the slope of the graph
decreases as the location increases is shown. This is because
the robots have more choices as the locations become more
vary. 20 tasksets are used at each variation of the number of
location in simulation.

D. Variation of the range of the time required

The results when changing the range of the time required
is in Fig. 5] (e) and (f). The overall trend is similar to that of
section |IV_I} As the range of time increases, the total time
taken(Loop counts) increases. 20 tasksets are used at each
variation of the range of the time in simulation.

Putting together all the results in the section to
the smaller the total number of tasks, the shorter the time
required for each task, and the greater the number of dishes
and locations, the probability of obtaining optimal results
increases. The average run-time for each case is shown in
the Table [

Right Arm
Ll L2 L3 L4 L5 L6 L7 L8 L9 LIOLI1
LIFF o0 1 1 1 1 1 1 1 1 1 17
L2 00 0 1 1 1 1 1 1 11
L3 01 0 1 1 1 1 1 1 11
L4 0000 1 0 1 1 1 11
E Ls 0000000 1 1 11
Z L6 0000 1 0 1 1 1 11
— L7 0000000 1 1 11
L8 00000000 T1 01
L9 01 000000000
Liof o0 000000 1 01
Ltk o 1. 1.0 0 0 0 0 00 0
()

Timeline —

Ensl
| Rightam | [i§ 1 2 9 10 5

Timeline —

“ Left Arm
| Right Arm 4 5

Timeline —

| Left Arm 6
| Right Arm 1 12 13 14 1s 16

(©)

i

Fig. 6. Result of validation test in real-sized testset. (a) The locations in
the workspace. (b) Relation matrix of robot configuration. (c) Selection of
tasks in timeline.

E. Validation for real-sized taskset

The previous results have a large number of tasks, making
it difficult to see whether our algorithm makes the optimal
choice. Therefore, the validation test was conducted for real-
sized taskset to make it easier to see the results. For the
taskset, Table [I] is used as input of test. Fig. [f] (a) shows
the locations in the workspace like kitchen. It has 11 pre-
defined locations, and inverse kinematics can be solved for
each location. The relation matrix in (b) was got through this
kinematics solutions. The result of test is shown in (c), and it
shows the task performed by the left and right arms along the
timeline. Three dishes were colored differently. The results
show that the sequence of all tasks satisfy the dependency
and kinematics constraints, and maximum use of both arms
simultaneously.

V. CONCLUSIONS

In this paper, we proposed a framework that can optimally
schedule multiple cooking tasks with concurrency for a dual
armed robot. A mixed-integer program is formulated to
assign an optimal next task which the robot can refer to
and execute. A task sequence that minimize cooking time
and maximize the number of options an arm to choose
in the next optimization step is considered more optimal.
The number of decision variables is reduced by taking only
feasible tasks by considering the kinematic constraints and
sequential constraints unique to cooking.

The approach was validated on a range of test cases to
verify the feasibility and scalability of the approach. While
this work specifically targeted task scheduling for a cooking
application, it can also be used in any situation where
more than one robot is sharing the same workspace and
coordination between them needs to be optimized for.

Future work includes incorporating constraints that rep-
resent tasks that require both arms to be used for a single

task (i.e. bimanipulation, robot cooperation) and optimiza-
tion over a limited time horizon, rather than only over a
single timestep, which would naturally make the approach
more optimal and reactive to unpredictable failure in task
execution.

[1]

[2]

[3]

[4]

[5]

[6]

[8]
[9]
[10]

(11]
[12]

[13]

[14]

[15]

[16]

REFERENCES

J. L. Jones, “Robots at the tipping point: the road to irobot roomba,”
IEEE Robotics & Automation Magazine, vol. 13, no. 1, pp. 7678,
2006.

M. V. Minniti, F. Farshidian, R. Grandia, and M. Hutter, “Whole-body
mpc for a dynamically stable mobile manipulator,” IEEE Robotics and
Automation Letters, vol. 4, no. 4, pp. 3687-3694, 2019.

“Spot®.” [Online]. Available: https://www.bostondynamics.com/spot
C. D. Bellicoso, K. Krimer, M. Stduble, D. Sako, F. Jenelten,
M. Bjelonic, and M. Hutter, “Alma-articulated locomotion and ma-
nipulation for a torque-controllable robot,” in 2019 International
Conference on Robotics and Automation (ICRA). 1EEE, 2019, pp.
8477-8483.

M. Caraher and T. Lang, “Can’t cook, won’t cook: A review of cooking
skills and their relevance to health promotion,” International Journal
of Health Promotion and Education, vol. 37, no. 3, pp. 89—-100, 1999.
“The future of food is here.” [Online]. Available: https://misorobotics.
com/

K. Wiggers, “Miso robotics unveils its next-gen robot kitchen
assistant,” Jan 2020. [Online]. Available: https://venturebeat.com/2020/
01/28/miso-robotics-unveils-its-next- gen-robot-kitchen-assistant/
“Samsung bot chef at ces 2020.” [Online]. Available: https:
/Iwww.youtube.com/watch?v=0OwA6-b1Z7aQ

“(eng) ’cloi’s table zone’, futuristic restaurant at ces 2020.” [Online].
Available: https://www.youtube.com/watch?v=vsZ_HUAPXLS

F. L. Craik and E. Bialystok, “Planning and task management in older
adults: Cooking breakfast,” Memory & Cognition, vol. 34, no. 6, pp.
12361249, 2006.

A.J. Garden, “Systems and methods of preparing food products,” USA
Patent US9 292 889B2, 2016.

K. E. Booth, T. T. Tran, G. Nejat, and J. C. Beck, “Mixed-integer and
constraint programming techniques for mobile robot task planning,”
IEEE Robotics and Automation Letters, vol. 1, no. 1, pp. 500-507,
2016.

K. E. Booth, G. Nejat, and J. C. Beck, “A constraint programming
approach to multi-robot task allocation and scheduling in retirement
homes,” in International conference on principles and practice of
constraint programming. Springer, 2016, pp. 539-555.

S. Kim, K. Jang, S. Park, Y. Lee, S. Y. Lee, and J. Park, “Continuous
task transition approach for robot controller based on hierarchical
quadratic programming,” IEEE Robotics and Automation Letters,
vol. 4, no. 2, pp. 1603-1610, 2019.

F. Zacharias, C. Borst, and G. Hirzinger, “Capturing robot workspace
structure: representing robot capabilities,” in 2007 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems. leee, 2007, pp.
3229-3236.

E. D. Andersen and K. D. Andersen, “The mosek interior point opti-
mizer for linear programming: an implementation of the homogeneous
algorithm,” in High performance optimization. Springer, 2000, pp.
197-232.

https://www.bostondynamics.com/spot
https://misorobotics.com/
https://misorobotics.com/
https://venturebeat.com/2020/01/28/miso-robotics-unveils-its-next-gen-robot-kitchen-assistant/
https://venturebeat.com/2020/01/28/miso-robotics-unveils-its-next-gen-robot-kitchen-assistant/
https://www.youtube.com/watch?v=OwA6-b1Z7aQ
https://www.youtube.com/watch?v=OwA6-b1Z7aQ
https://www.youtube.com/watch?v=vsZ_HUAPXL8

	INTRODUCTION
	Problem Preparation
	Environment
	Problem Reduction
	Task Dependency Constraint
	Kinematic Constraint

	Task Scheduling with Mixed-Integer Programming
	Search Space Reduction
	Factors for the Objective Function
	Mixed-Integer Formulation and Task Selection
	Objective Function
	Constraint

	Validation Test
	Variation of the number of tasks
	Variation of the number of dish
	Variation of the number of location
	Variation of the range of the time required
	Validation for real-sized taskset

	CONCLUSIONS
	References

