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Abstract— This paper presents a complete motion planning
approach for quadruped locomotion across an unknown terrain
using a framework based on mixed-integer convex optimization
and visual feedback. Vision data is used to find convex polygons
in the surrounding environment, which acts as potentially
feasible foothold regions. Then, a goal position is initially
provided, which the best feasible destination planner uses to
solve for an actual feasible goal position based on the extracted
polygons. Next, a footstep planner uses the feasible goal position
to plan a fixed number of footsteps, which may or may not result
in the robot reaching the position. The center of mass (COM)
trajectory planner using quadratic programming is extended to
solve for a trajectory in 3D space while maintaining convexity,
which reduces the computation time, allowing the robot to
plan and execute motions online. The suggested method is
implemented as a policy rather than a path planner, but its
performance as a path planner is also shown. The approach is
verified on both simulation and on a physical robot, ALPHRED,
walking on various unknown terrains.

I. INTRODUCTION

As robotics technology further matures and more robots
enter environments where they are to co-exist with humans,
robots will have to adapt to the various demands of both
natural and man-made environments. While wheeled robots
provide both stability and efficiency, they become limited
when faced with complex and discontinuous terrains. Legged
robots provide far better performance in these unknown and
potentially challenging terrains.

However, path planning for legged systems is a non-trivial
task, especially as the number of legs and the degrees of
freedom increases. The increase in the number of legs does
provide more stability and is one of the factors behind a
surge in multi-legged robots conducting meaningful tasks in
man-made environments. Traditionally, these path planning
problems have been tackled using a sampling approach, some
form of a graph search, or a planner based on optimization.

Sampling based approaches are immensely useful when
dealing with problems with high degrees of freedom and
constraints like a multi-legged robot [1]. For example, RRTs
have been used to reactively path plan in environments
with 3D moving obstacles [2], albeit the use of a motion
capture system. There are also many cases of A* being
used in the space of possible actions and replanning, as
unforeseen obstacles are introduced. The downside of these
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Fig. 1. ALPHRED walking over an unknown terrain by planning based
on sampling and optimization.

is that they have needed a lot of computation time along with
heuristics [3], [4], [5]. Similar and more efficient work has
been done using AD* and ARA*, but these also suffer from
heuristics playing an important role in their effectiveness
[6], [7], [8]. Deits found near optimal solutions for bipeds,
which Aceituno-Cabezas extended to multi-legged robots,
but a user had to inform the robot of safe regions that
it could step on before the optimization could be run [9],
[10]. The downside with many of these approaches is that
a lot of the times there requires a human operator behind
the scenes, meticulously assisting the robot in forms ranging
from providing a complete map with heuristic information to
carefully designed initial conditions. In these environments
without a priori knowledge, if the human is mostly removed
from the control loop, even a slightly complex environment
will make it difficult for these approaches to be effective.

In this paper, we utilize a combination of random sam-
pling and a sequence of optimization to systematically plan
motions from visual feedback in an unknown environment
with only an initial input by a human. Unlike in other
approaches, the effort required to design the initial input is
very simple–it is simply the final goal position. Afterwards,
we rely on visual feedback to provide regions that the
robot may be able to use to solve for an optimal footstep
sequence and center of mass trajectory. Even if this final
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goal position is physically impossible, the robot will make
its best effort autonomously. By introducing randomness
from using a sampling approach in front of a sequence of
optimizations, we achieve a probabilistic convergence to the
final goal position. However, because of this randomness
from sampling, the regions make the entire planner non-
optimal when considering the entire path from start to finish,
but by taking a policy approach, each footstep and COM
motion is optimal given its state.

Contribution: Therefore, our contribution in this paper
is primarily in two parts. The first is that we provide a
complete method for a multi-legged robot to autonomously
path plan given a goal position to head towards, and the
problem is treated as a policy problem, where each state’s
inputs (vision data) result in an optimal next action based on
a series of mixed-integer convex optimizations. The second
part further utilizes mixed-integer convex optimization to ex-
tend the optimal ZMP-constrained COM trajectory originally
constrained in 2D into 3D. Optimizations are designed with
easy constraints to minimize the solving time to reach a
smooth motion in-between steps. In the next section, we give
a brief overview on related works on planar extraction and
footstep planning.

II. RELATED WORKS

Plane detection in robotics have been dealt with in many
different ways to provide the robot with valuable infor-
mation in a timely manner. Geometric features have been
extracted from point clouds using 3D Hough transform [11],
region growing methods [12], [13], and RANSAC based
approaches [14]. Non-conventional approaches such as semi-
definite programming approaches [15], methods that use
second derivative estimates [16], and stereo-fusion based
segmentation have also been shown [17], but they require
relatively longer solving times.

There are also a lot of different approaches to general
footstep and COM trajectory planning, with some of the
approaches already introduced. A decomposition of the plan-
ning into global and execution phases have been explored
[18], while planners that represent the contact manifold
geometrically and decomposing it to reduce the complex-
ity of the planning problem have also been shown [19].
While many of the previously mentioned approaches are
constrained to a fixed orientation, non-linear programming
based algorithms that also consider orientation in the footstep
planning, albeit the lack of optimality, have been proposed
[20].

III. TECHNICAL APPROACH

Our approach is conducting plane detection on vision
data in a favorable way for the best feasible destination
planner and footstep planner, such that the optimal feasible
destination and footsteps can be planned autonomously given
a goal position. Afterwards, mixed-integer constraints are
included into an originally simple quadratic program, to
overcome bilinear and nonlinear constraints and solve for
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Fig. 2. Different flow depending on flatness of detected terrain. If terrain
is determined flat, robot regards all the open areas as safe regions and walks
based on the ZMP trajectory. Boxes with thicker border are those that solve
optimization problems.

a height trajectory while maintaining the ZMP stability
criterion.

A. Random Sampling of Foothold Regions

When randomly sampling potential foothold regions, there
are two criteria that all regions have to satisfy.

1) A randomly sampled region should have dimensions
that are greater than a pre-defined minimum.

2) The offset angle between the region’s normal vector
and the global Z-axis must be less than some maximum
value.

To begin with, points in the pixel space with depth value
between depthmin and depthmax are extracted to prevent
sampling on points with depth values of no interest. No
interest points are points that returned 0, inf , or a depth
value over a pre-defined maximum depth value, which could
potentially create unwanted polygons that would negatively
impact the solving speed of subsequent modules. Then, as
long as the number of randomly sampled points and the
number of search attempts are below a pre-defined maximum
(maximum number of filtered points nmax

p,filt and maximum
number of regions nmax

rg ) a while loop searches through the
reduced number of points. An initial point, prnd,0, from
the reduced points is randomly chosen, and based on this
point, two other points, prnd,1, prnd,2, which are less than η
distance from prnd,0, are chosen. A normal vector to these
three points is calculated, and to satisfy the second criteria,
its offset to the global Z-axis is computed.

If this offset is below the chosen maximum offset, the
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vicinity of these three points is considered as a potential
region that the robot can safely step on without slipping,
since the incline is expected to be a reasonable amount. To
guarantee the first criteria which is chosen based on the foot
size of the robot, the actual pixel space to search for around
the average of the three randomly chosen points, pavg , is
calculated. Then, the search dimensions in the pixel space
(ww, wh) are calculated and pavg is given to RANSAC
[21] as an input to find points that are inliers and make
up a polygon. If there are sufficient number of inliers, the
algorithm considers the inlier points pinliers as a potential
candidate region, and creates a polygon object from these
points and appends it to P , a list of polygons. The polygon
object then calculates the points making up its convex hull
using Graham scan, its polyhedra form of Ax ≤ b [22], its
normal vector, its center of mass, and its center based on the
points of the convex hull. The pseudocode is shown in Alg.
1.

Algorithm 1 Foothold Region Random Sampling
1: procedure RANDOMFOOTHOLDREGION(pd, ppc)
2: P ← {}
3: pd ← depthmin < pd < depthmax

4: while np,filt < nmax
p,filt and nrg < nmax

rg do
5: ninliers ← 0
6: (prnd, r)← SelectRandomAndEta()
7: if r < offsetmax

z then
8: pavg ← XYZAverage(prnd)
9: (ww, wh)← PixelSpaceSearchDim()

10: (ninliers,ppoly)← RANSAC(pavg, ww, wh)
11: if ninliers > nmin

inliers then
12: Append ppoly to P
13: nftp ← nftp + ninliers

14: nrg ← nrg + 1

15: return P

B. Best Feasible Destination based on Approximate Desired
Destination

Afterwards, the best feasible destination is solved for
based on the goal position provided by the operator and
the list of polyhedra P . The goal position can be chosen
as an actual final position for the robot to get to, or it can
be a point that the robot should continue to plan towards
without ever reaching it; i.e. it can also act as a direction
that the robot should head towards. Vision data from the
previous module will check to ensure that there are feasible
foothold regions that satisfy the robot’s kinematics at the goal
position; if such regions do not exist, the optimization will
find the next nearest position for the robot, which becomes
the best feasible destination.

1) Objective: To try to satisfy the user’s command while
also ensuring kinematic reachability and stability, the cost
function is designed to have two parts. Its formulation is
shown in Eqn. 1 and Eqn. 2:

• A quadratic cost on the distance between the user’s
desired COM position pdc and the best feasible COM

position pc

(pc − pdc)TQc(pc − pdc) (1)

• A quadratic cost on the distance between the best
feasible COM position and the center of the foothold
positions fc

(pc − fc)TQm(pc − fc) (2)

2) Constraint-Footstep Assignment to Feasible Regions:
The extracted polygons from the previous module are used to
find the best feasible destination. This is done by constraining
potential footsteps that place the body at the best feasible
destination to be assigned a single region, while all regions
are required to be assigned one or zero footsteps. The assign-
ment is done by using a binary matrix H ∈ {0, 1}nrg×nlegs ,
where Hr,j = 1 when the j-th footstep is assigned to region
r. Otherwise, Hr,j = 0.

Hrj =⇒ Arfj ≤ b (3)∑
r Hrj = 1 for j = 1, · · · , nlegs (4)∑
j Hrj ≤ 1 for r = 1, · · · , nrg (5)

3) Constraint-Kinematic Reachability: Reachability is
taken into account by constraining each foothold to be within
Rnom from the best feasible destination. Since Rnom is the
maximum distance that a foot can reach, an absolute value
on the difference between the foothold fj and pc constrained
to be less than or equal to Rnom is included:

‖fj − pc‖2 ≤ Rnom for j = 1, · · · , nlegs (6)

C. Footstep Planner to the Best Feasible Destination

Optimal footstep positions are found by using the polygons
detected from vision data and the best feasible destination
obtained previously. To further lessen the time spent on solv-
ing the optimization problem, additional filtering of vision
data that would be beneficial to the optimization program
is done. Defining vc as the vector from the current position
of the COM to the best feasible destination of the COM,
two regions that are parallel and to the left and right of vc
are generated in the form of Ax ≤ b. This region is created
because considering the kinematic reachability constraints of
the physical robot, there is little reason to use the complete
set of randomly sampled regions that the robot may never
be able to reach in the first place. Then, given a set of
potential foothold regions, the best feasible destination, and
the number of steps to solve for, a mixed-integer convex
optimization problem is solved to assign footsteps to regions.

1) Objective: The cost function to be minimized has
three main portions that shape how the footsteps should be
assigned:

• A quadratic cost on the difference between the center
of the feet and the best feasible destination

(pc − fc,k)TQg(pc − fc,k) (7)
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• A quadratic cost on the relative distance between steps
of the same leg

(fk+nlegs
− fk)TQr(fk+nlegs

− fk) (8)

• A linear cost on the confidence of the safety of each
region

cfPaHa,k for a = 1, · · · , nrg
for k = 1, · · · , nfs

(9)

Since mostly the x, y position of the center of the feet is
close to the COM position, and since we plan the footsteps
before finding an optimal COM trajectory, we put a cost on
the distance from the center of the feet configurations to the
best feasible destination. We also put a cost on the relative
distance between steps such that the robot does not try to
take huge steps that may lead to instability. Lastly, the cost
on the confidence of the safety of each region, scaled by
a confidence factor of cf , encourages the robot to choose
foothold regions that are safer, where safer regions are those
with a bigger polygon area Pa, even if it may result in a
roundabout path, to ensure a safe locomotion.

2) Constraint-Safe Foothold Regions: A relaxed version
of the safe foothold region constraint from the previous
section is used (i.e. only Eqn. 3 and 4), as Eqn. 5, which
constrains each region to be assigned to at most one footstep,
is no longer necessary and multiple footsteps can be assigned
to one region.

3) Constraint-XYZ Reachability: Reachability in the XY
plane is constrained from the current center of footsteps,
where a reachability constraint is enforced per leg by con-
straining the foot position to be inside a box of dimensions
(boundx, boundy). This box is represented to have a center
at a nominal distance, Lnom, away from the footstep’s center,
and at a nominal angle relative to the x axis of the robot for
the respective leg, which is also a function of the heading
angle θheading as is seen in Fig. 3. The heading angle
is simply the angle from the robot to the best feasible
destination.

θheading = Atan2(pc,y, pc,x)

lnom,x = Lnomcos(θheading + offsetnom)

lnom,y = Lnomsin(θheading + offsetnom)

fk,x ∈ fc,k,x + lnom,x ±
boundx

2

fk,y ∈ fc,k,y + lnom,y ±
boundy

2

Reachability in the Z is simply constrained by putting a
bound on the maximum offset in the Z direction for the same
foot.

fk,z ∈ fk−nlegs,z ± boundz

Fig. 3. A graphical representation of the reachability constraint in the XY
plane.

D. 3D ZMP Trajectory with Stability

Given the footstep position there are multiple ways to
generate a COM trajectory that the robot is to follow. Tra-
ditionally, this trajectory is calculated based on a constraint
on maintaining the stability of the robot in the sense of the
ZMP, as defined in the following definition.

Definition Stability in the sense of the ZMP is when the
ZMP, defined as in Eqn. 10, is inside the support polygon
created by the support points of the robot.

xzmp = xm −
zmẍm
z̈m + g

(10)

However, to do this, a fixed COM height zm and zero
acceleration in the Z direction z̈m is a requirement to prevent
bilinear constraints. For variable height terrains such as
stairs, a vertical displacement is unavoidable and a simple
linear interpolation in the z direction risks violating the
stability definition. While non-linear programming solvers
can solve such complexities to optimize over the Z trajectory,
we approached the problem by approximating the bilinear
constraints in a mixed-integer quadratic program, because
of its ease of setup, solve time with modern solvers, and a
sub-optimal solution being acceptable as long as stability is
guaranteed. Given the optimal footstep positions from the
previous section, the optimization was formulated to solve
for the coefficients of six quintic polynomials in x, y, and z
directions that are continuous to the second derivative. The
exact formulation of the entire program is shown below.

1) Objective: The chosen objective function was to mini-
mize the cost of the acceleration in all x, y, and z directions
for safe locomotion [23].

ẍ1 + ÿ1 + z̈1 + ẍ2 + ÿ2 + z̈2 (11)
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2) Constraint-Continuous Trajectory: Because we wanted
the robot to follow a smooth, continuous path without jerks
in-between steps, a constraint was added such that not only
the position, but also the velocity and the acceleration had
to be continuous between the two trajectories. Eqn. 12, 13,
14 is also applied for y and z trajectories.

xi(Ti) = xi+1(0) (12)

ẋi(Ti) = ẋi+1(0) (13)

ẍi(Ti) = ẍi+1(0) (14)

3) Constraint-ZMP Stability: The ZMP position is calcu-
lated by Eqn. 10, and this point is required to be within
a support polygon created by three points of the stance
feet, with each line of the polygon defined in the form of
px+ qy + r = 0.

4) Approximation of zmẍm: In our case, because the
planner is used to also solve for trajectories traversing
uneven terrain, it is mandatory for zm to be a polynomial
rather than a constant; consequently, its trajectory is also
optimized. However, in such a case, a bilinear constraint
is introduced, resulting in having to resolve to using other
complex solvers which may take more time to compute.
However, this constraint can also be taken care of using
approximations such as the McCormick Envelope [24] or by
multi-parametric disaggregation technique [25]. In our case,
we approximate using a McCormick envelope by defining a
new decision variable w := zmẍm, and adding the envelope
as the constraints.

wx ≥ −zmL
ẍmL

+ zmẍmL
+ ẍmzmL

(15)

wx ≥ −zmU
ẍmU

+ zmẍmU
+ ẍmzmU

(16)

wx ≤ ẍmzmU
− zmU

ẍmL
+ zmẍmL

(17)

wx ≤ zmẍmU
− zmL

ẍmU
+ ẍmzmL

(18)

5) Approximation of wx

z̈m+g : Now that we have wx

z̈m+g , we
have a nonlinear constraint, and the McCormick envelope
cannot be implemented directly. To overcome this, we define
a new variable k := z̈m + g. Then, a binary matrix Z ∈
{0, 1}N×S is created, with N as the number of piecewise
linear approximations of 1

k and S as the number of splines in
two consecutive support polygons. Finally, another variable
u = 1

k is created, and we use Z to map 1
z̈m+g to u while

preserving convexity. The mapping is done by the following
mixed-integer constraints:

Zns ⇒

{
kmL

≤ km,s ≤ kmU

u = mskm,s + bs

Also, each spline is constrained to a single segment in the
linear approximation by Eqn. 19. As an example, in the case
of N = 3, a segment can be any one of the segments shown
in Fig. 4.

N∑
n=1

Zn,s = 1 (19)

Fig. 4. Example of a piecewise linearization with N = 3 for demonstration
purposes.

This brings us to the familiar bilinear constraint, where we
can define v := wxux. The adaptation of the envelope as in
Equation 15 ∼ 18 can be used. Now, instead of the traditional
constraint using the ZMP stability criterion where zm is to
be a constant and z̈m = 0, zm can also be optimized for
where it does not have to be a constant and z̈m does not
have to equal zero.

IV. EXPERIMENT

The main goal of this approach was to give more au-
tonomy to the robot by finding a feasible destination from
an initial goal position commanded by the operator, and
executing a motion plan based on visual feedback. Therefore,
we evaluate the robot’s performance in terms of its ability
to move towards the best feasible destination in an unknown
terrain from only a rough goal position commanded by the
operator. However, since the majority of this approach is
a sequence of processing of data and optimization based
on a previous outcome, we also evaluate its performance in
terms of computation time. We record the times of the full
sequence of scanning for foothold regions to solving for the
COM trajectory by summing the runtime of each individual
module listed in Section III. The approach was tested on both
simulation and verified on a physical robot called ALPHRED
(Autonomous Legged Personal Helper Robot with Enhanced
Dynamics) [26].

A. Simulation Setup

The entire motion planning sequence was evaluated on
three different terrains (flat, stairs, random rough terrain)
with the operator giving the same desired goal COM desti-
nation of x = 1.25m, y = 1.25m, and z = 0.57m. Note that
when this command is given, both the operator and the robot
have no terrain knowledge and consequently, no pre-planned
future motions. The computer used to run the sequence was
equipped with an Intel Core i7-7700HQ (2.80 GHz) and 16
GB of RAM (2400 MHz), running Ubuntu 16.04 and Python
2.7. For all optimization, we used Gurobi [27].
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B. Physical Verification

ALPHRED is a modular multi-modal robot with four
limbs with each limb having 3 degrees-of-freedom that can
be used as both legs and hands depending on the needs of
the application. Its end-effector can easily be modified to
equip a bar feet and a point feet, and it also has a neck
where a camera can be mounted to accumulate vision data.
In our testing on both simulation and experiment, point feet
was used on the end-effector, and an RGBD camera (Intel
Realsense R200) was used. We used the on-board computer
on ALPHRED, which is equipped with an Intel Core i5-
5250U and 8 GB of RAM.

V. RESULTS

A. Overall Performance

Overall, given the initial goal position by the operator,
this process was able to continuously and autonomously
find a path towards the best feasible destination by finding
feasible regions, selecting the safe ones to plant the feet, and
generating a motion plan for the next step. Fig. 6 shows a
random sampling of potential foothold regions and Fig. 5
shows the framework executed on ALPHRED for climbing
stairs, with the footsteps and COM trajectory shown and
executed on both the simulation model and the physical
system.

B. Timing Tests

We realize that despite the maturity of state-of-the-art
solvers, because we are solving a sequence of mixed-integer
programs, it was still important to monitor the time it took
for each module to fully finish its task, as the original goal

(a) Results seen in XY plane (b) Results seen in XZ plane

(c) Execution in simulation (d) Execution in physical model

Fig. 5. Simulation results for the framework.

was to produce a smooth motion. Table I shows an average of
1000 samples of running the entire sequence in simulation,
with the amount of time it took per module in milliseconds.

TABLE I
TIMING OF MODULES IN MILLISECONDS

Terrain Vision GPP FSP MP Total Time

Flat 2.001 5.112 4.533 6.5376 18.1836
Stairs 2.013 4.924 4.236 6.5189 17.6919
Rough 1.843 4.638 3.394 6.4921 16.3671

C. Determination of Best Feasible Destination

The best feasible destination from feasible regions is
shown in Fig. 7 for flat and rough terrain. With flat terrain,
the locations of the feasible regions are well aligned, and
the best feasible destination is in the direction towards
the desired COM position. With rough terrain, the best
feasible destination is still found regardless of the irregular
distribution of the feasible regions, but it lies on the edges of
the support polygon and the modified destination is clearly
not in the direction towards the desired destination.

D. Determination of a Confident Path

Given the best feasible destination, a confidence factor cf
in Eqn. 9 determines how conservative the footstep planner
should be when planning the footsteps to take. This is
more influential when planning long trajectories rather than
policies, as the planner could stay conservative for the first
few steps and get more aggressive in the later steps, while
when the framework is used as a policy, the aggressive
behavior may not show up immediately in the best next step.
Thus, in the case with trajectories, as can be seen in Fig. 8,
one plan shows a roundabout path, but a path with safer
regions, while the other plan shows a more direct path, but
one with riskier regions. Note that the planner chose to stall
at the end with the safe path because it deemed further paths
as unsafe.

VI. DISCUSSION
Our results showed that each module functions properly

and when integrating the modules together, the robot can

Fig. 6. Detected feasible regions (red polygons) extracted from point cloud
data (grayscale points) of a scan of a rough terrain. Three lines colored in
red, green and blue represent X, Y, Z axis of the camera, respectively.
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(a) Flat Terrain (b) Rough Terrain

Fig. 7. Computed the best feasible destination under (a) flat terrain
condition and (b) rough terrain condition. For a given desired COM, the
best feasible destination is found by trying to be as close as possible to the
desired commanded COM, while considering the robot’s reachability and
feasible regions.

plan for long steps if needed, but also always optimize for
the next best step to take based on randomly sampled regions
without delay in-between steps because of quick computation
times.

However, in regards to the time it took in each module, it
is heavily dependent on the parameters of the vision filter.
np,filt and nrg determine the amount of data that the vision
module is to return, and since this data is used by subsequent
modules, these parameters affect the computation speed of
the entire approach.

Because we can take one step from a single run through
the entire sequence, and repeat this process at every step, we
could afford to limit the number of polygons extracted from
a single snapshot of the point cloud data and ensure fast
solving times throughout the entire approach. The timings in
Table I are from extracting 10.511 polygons on average over
a 1000 snapshots in a terrain with many flat areas, such as
stairs. This is the worst case scenario for our chosen np,filt
and nrg in our application, because as the environment has
less flat surfaces, less feasible polygons will be returned, and

Fig. 8. Different paths depending on the confidence factor cf . Bigger cf
results in choosing a path with polygons having bigger area, while smaller
cf results in choosing a riskier path that will allow the robot to end closer
to the best feasible destination.

since computing the different characteristics of a polygon
take up a significant time, overall the amount of time to
sample from the vision data once will decrease. However,
in situations where the number of polygons decrease, we
technically diverge from optimality as probabilistically we
may not sample the optimal regions the footstep planner
needs to directly move towards the best feasible destination.

In regards to optimizing for the best feasible destination,
it played an important role in modifying a command that
may be impossible. We wanted the robot to still be able
to approach the commanded goal positions to some degree
despite a poor command, while also avoid it if the command
was impossible. It worked well because even if the human
wanted to give a poor command, the planner would make
its optimal decision based on what the vision module saw,
and provide a modified destination to the footstep planner.
Again, as it is based on randomly sampled vision data,
despite an optimal path to the user’s goal position existing,
the destination planner may provide the footstep planner
with an incorrect destination, resulting in a sub-optimal path.
Additionally, there are no guarantees of stability when the
best feasible destination is optimized for. Nonetheless, in
subsequent footsteps, new vision information could provide
foothold regions where stability may be possible.

The footstep planner also adds a second layer of autonomy
and safety. Before the footstep planner, the polygons are
considered as feasible regions and that is it. From the footstep
planner, the notion of a safe foothold region is introduced
with the introduction of a confidence factor. The confidence
factor is used to guide the optimization to either choose
smaller regions but find a more direct footstep towards the
best feasible destination, or take a roundabout path that
ensures that the foothold assigned regions’ areas are bigger
than that of the majority sampled. To test its performance,
instead of planning a single set of footsteps to go towards
the best feasible destination, we specified an exact number
of footsteps to take. In the case when cf was set to 0, the
cost function’s confidence terms were eliminated, resulting
in a function purely dependent on the distance between the
center of the feet sequences and the best feasible destination.
Consequently, a straightforward path to the goal was solved
for. On the contrary, when cf was set to 2.0 × 105, the
optimization chose bigger regions that would be safer in the
sense that the actual footstep could afford to be off from the
planned footsteps and the robot would still likely be stable.
This would however, come at the cost of the final position
not reaching the best feasible destination.

Furthermore, the COM trajectory solver is able to solve
for 3D trajectories, while still maintaining ZMP stability.
However, depending on how many splines are to be created
and how much linear approximation of 1

z̈m+g we plan on
doing, better trajectories may be achieved, but at the price
of longer solve times. In our situation, because we were
commanding the robot to find the next best action in an
unknown terrain, and because of the conservative approaches
taken in the previous modules, we expected z̈m + g to not
deviate too much from 9.81. Therefore, we could limit the
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number of piecewise segments in the linear approximation
and still solve for stable COM trajectories in 3D.

VII. CONCLUSION & FUTURE WORK

This work introduces a framework for multi-legged robots
to autonomously plan and travel over unknown terrains, given
an initial goal position. A randomly sampled vision data is
passed to a series of mixed-integer programs where the robot
can autonomously optimize for modified goal positions and
footsteps, and solve a COM trajectory in all x, y, and z
directions, while keeping stability as a necessary constraint
and safety as a cost. The framework can be used as a policy,
where vision data is processed and the next best step is taken
based on the current state of the robot, to achieve a reactive
planner robust to intermediate errors. However, it can also
be used as a path planner that solves for multiple sets of
footsteps.

The framework is able to successfully navigate unknown
terrains with only the initial goal position commanded, as
the vision module and optimizations modify and adapt the
goal position and footsteps such that they are feasible and
safe. The downside is that the approach is highly dependent
on the performance of the sensors and that an optimal path
is never guaranteed. Nonetheless, constraints in stability and
the ability to realize an approach of sampling and optimizing
after every step because of fast computation times allow
the approach to eventually navigate to the best feasible
destination.

In the future, we plan on further exploring the idea of
“confidence” in our optimization, where more than just
information on potential foothold regions’ areas are included,
such as the material of the region or the dynamic state of
the entire robot. What is considered to be a ”reasonable
terrain” for a robot with certain kinematics and dynamics
are also to be explored. Furthermore, the framework can
still be enhanced, as currently, the approach constrains the
orientation of the body, which makes the workspace limited.
With this extension, an even more sophisticated path planner
over unknown terrains could be achieved, where the robot
chooses footsteps that it could not previously find with a
fixed orientation.
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