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ABSTRACT
This paper presents a trajectory optimization algorithm for

legged robotics that uses a novel cost function incorporating
point cloud data to simultaneously optimize for footstep locations
and center of mass trajectories. This novel formulation trans-
forms the inherently discrete problem of selecting footstep loca-
tions into a continuous cost. The algorithm seamlessly balances
the desire to choose footstep locations that enhance the dynamic
performance of the robot while still choosing locations that are
viable and safe. We demonstrate the success of this algorithm
by navigating the ALPHRED V2 robotic system over unknown
terrain in a simulation environment.

INTRODUCTION
Legged locomotion for robotic systems is an inherently un-

deractuated problem requiring the complex planning of discrete
foot placements and center of mass (CoM) trajectories in order
to successfully navigate the world. Ground reaction forces at the
points of contact and gravity are the only forces acting on a robot,
making control of the ground reaction forces vital to achieve a
successful motion plan. For this reason, foot placement is a crit-
ical component of developing a successful walking trajectory for
a legged robot. However, due to the non-linear relationship be-
tween foot placement and robot dynamics many of the previous

∗Address all correspondence to this author.

FIGURE 1. SIMULATION OF ALPHRED V2 TRAVERSING
OVER AN OBSTACLE

works either solve the problem offline or decouples the problem
by separately planning footstep locations before solving for CoM
trajectories.

There have been several successful frameworks that perform
full-body trajectory optimization (TO) to execute complex tasks
[1–3]. However, these algorithms are computationally complex
resulting in the need for offline planning and full knowledge of
the terrain a-priori making them impractical to use in the real-
world. In [4] and [5] the Cheetah robot was able to perform
extremely dynamic bounding gaits through the use of optimized
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force profiles on the ground. However, these algorithms were
tailored for bounding gaits on flat terrain and do not extend to
the general case for different gaits or uneven terrain.

Schaal et al. was one of the first to develop a method for
trajectory planning over uneven terrain. In [6] they developed
an impressive machine learning (ML) algorithm to build a ro-
bust footstep planner for a variety of terrains. The developed
ML algorithm used a discritized height map to optimize for foot-
step locations based on the safety of the foothold position and
the robot’s kinematics. The footstep plan was then used by a
Zero Moment Point (ZMP) motion planner to create a safe trajec-
tory. In [7] Deits et al. developed a mixed-integer quadratically-
constrained quadratic program (MIQCQP) to solve for an opti-
mal footstep plan based on visual data. From the vision data
Deits created a discrete set of viable planes where the robot could
place its foot and used the MIQCQP to select the most optimal
set of footsteps. In [8] Kuindersma et al. developed a stabilizing
QP controller for dynamic walking that would use the MIQCQP
as the input to the stabilizing controller. However, once again in
this case the footstep planner only considered the kinematics of
the robot and not the dynamics. ETH demonstrated impressive
results on the ANYmal platform in [9] by simultaneously solv-
ing two different optimization problems, one for the CoM and
one for the footstep locations. In this case the footstep planner
was able to optimize the footsteps based on past dynamics of the
robot, however the current and future CoM motion was not in-
cluded in the optimization of the feet position. These methods
all show impressive results but none of them address the inherent
coupling between the footstep locations and the dynamics of the
robot.

Winkler et al. developed non-linear programs (NLP) to si-
multaneously optimize for both CoM trajectories and foot place-
ments. In [10] Winkler proved that his novel method of repre-
senting the ZMP constraint embedded capture point (CP) [11]
dynamics into the optimization of the footstep locations for a po-
sition controlled robot. In [12] Winkler developed an NLP to
solve for trajectories and footsteps using floating base dynamics
for a force controlled robot. Similar to Winkler’s floating body
dynamics NLP, Bledt [13] developed an NLP that added useful
heuristics to the cost function to significantly improve the time
required to solve the optimization problem. Both Winkler’s and
Bledt’s implementations optimize feet locations based on the dy-
namics of the robot, but do not consider the viability or safety
of those locations. In addition, these algorithms require a dense
height map of the entire terrain a-priori making them impractical
for use on uneven terrain.

This paper presents a method for combining the previous
works into a single NLP that produces CoM trajectories and
foothold positions. A vision algorithm scores potential footstep
locations based off of a multitude of criteria which then is used
by an NLP to optimize for foothold positions based on safety of
the location from the vision data, kinematics of the robot, and

dynamics of the robot. The contributions made by this paper are
the following:

- Development of a vision algorithm that finds the closest
viable footstep location relative to a nominal footstep loca-
tion. This algorithm provides a cost of that footstep location
relaying how safe that position is.
- Development of a formulation that takes advantage of pre-
viously developed algorithms to solve the problems of foot-
step planning and trajectory optimization simultaneously.
This formulation avoids the use of mixed integer optimiza-
tion or multiple optimization problems that might not be able
to utilize the dynamics of the robotic system.
- Development of an architecture that allows for continu-
ous solving and stitching of trajectories while perceiving and
adapting to the changing environment. This structure guar-
antees for safe motion of the robot even in the case where
the optimization problem fails to find a solution.

Taken together, the contributions we offer enabled the de-
velopment of a framework that utilizes the relationship between
feet placement and robot dynamics while using safe and viable
footstep locations. The presented formulation was tested in sim-
ulation on a quadrupedal robot, however it should be noted that
the algorithms could be generalized to robotic systems with any
number of legs.

1 SYSTEM OVERVIEW
An overview of the system framework for teleoperation on

the ALPHRED V2 platform is shown in Fig. 2. User inputs (ve-
locity magnitude, heading, and gait type) are passed to three mo-
tion planning threads, the first being the footstep planner. Based
on user inputs the footstep planner generates footstep times and
locations that will result in the desired velocity and direction of
the robot. The footstep planner is further discussed in Section 2.
The nominal footsteps are passed to the vision algorithm which
potentially modifies these footsteps to the closest, viable, and
safe locations. Each of these locations is given a score based
on how safe these locations are, where the location is found by
finding a flat viable plane and the safety is determined by the flat-
ness, friction, and size of the sampled region. The analysis of the
vision algorithm is discussed further in Section 3. These mod-
ified footsteps and scores are then passed to the TO algorithm.
The TO algorithm will produce the final footstep locations and
an optimal CoM trajectory for the robot to execute, discussed in
Section 4. The optimized trajectory and footstep plan is passed
to a Finite State Machine (FSM) which uses position control to
execute the given trajectory. The FSM runs at 200 Hz and runs in
parallel to the footstep planner, vision footstep adjuster, and tra-
jectory optimization. While the FSM is executing the given tra-
jectory the other three threads are simultaneously working on the
next trajectory based on the most current user input. The three
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FIGURE 2. HIGH-LEVEL SYSTEM ARCHITECTURE FLOW
CHART

motion planning threads run sequentially due to their reliance on
the previous threads outcome.

2 FOOTSTEP PLANNER
The footstep planner determines the times and locations for

the next 8 steps based on the previous trajectories footstep plan
and the user inputs: velocity, direction, and gait type. The foot-
step planner returns a list of times and positions for each leg,
which is passed to the vision footstep adjuster thread.

T i = [t1, t2, t3, t4]

F i = [ f1, f2, f3]
(1)

Where i ∈ {1,2,3,4} is the i-th leg, tn ∈R is a time, and fm ∈R3

is a 3 dimensional position vector. The entry f1 for each leg is the
current position vector of that leg. The final two position vectors
are the new footstep locations that will produce the desired direc-
tion and speed of the robot. The time vector consists of a lift off
time and touchdown time for each of the new footsteps respec-
tively (no times are need for the first location). This formulation
makes it quite simple to change the gait of the robot by simply
changing the time vectors for each leg. An indicator function can
be derived from the time vector that indicates whether foot i is on
the ground or not. Where Ci(t) = 0 when the i-th foot is off of
the ground.

Ci(t) =

{
0 t1 < t < t2 or t3 < t < t4
1 otherwise

(2)

The location of the footsteps are determined using Raibert
heuristics [14] similar to the method used in [15] and [16].

fi = fnom + ṙ
∆t
2

(3)

Where, fnom is the nominal position of the foot when the
robot is initialized, ṙ is the CoM’s velocity, and ∆t is the contact
time of the foot. In this case ∆t = t3− t2.

3 VISION FOOTSTEP ADJUSTER
To achieve online trajectory planning based on vision data

where a potential adjustment from the nominal footstep position
as well as a cost for the position needs to be passed back within
a certain deadline, it was not possible to conduct a brute force
search through all of the available vision data. Thus, it was nec-
essary to conduct a series of pre- and post-processing strategies
in such a way that less data could be used without loss of perfor-
mance.

3.1 Pre-processing
Due to strict time constraints imposed by online planning,

the order and the types of operations applied to the data were
critical. We primarily tried to aggressively reduce the amount of
data before conducting any computationally heavy tasks.

3.1.1 Reduced Vision Data All operations are done
purely on point cloud data, as opposed to including RGB and
depth information as demonstrated in [17]. While losing RGB-
D information means a loss of more than half what some sensors
can fully provide, considering the task at hand it was unnecessary
to include such information.

In addition to removing the RGB data, the point cloud data
was further reduced by a series of operations. First, the field of
view (FOV) was narrowed to only fit the provided nominal foot-
steps. Second, there was no need to look past the furthest foot-
steps hence a passthrough filter was used to cut-off distant point
clouds. Lastly, this reduced point cloud was downsampled by re-
structuring the cloud as a grid and taking the centroid as opposed
to the center to better represent surfaces even in a downsampled
state.

3.1.2 Planar Leg Removal Due to the camera being
located under the body of the robot the vision sensor returns point
cloud data about each of the front legs. While this information
can be useful for collision detection, for the purposes of this pa-
per, it was unnecessary. Our choice to efficiently remove this
data from the cloud was to conduct a planar segmentation using
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RANSAC [18]. With the correct parameters, the rod shaped legs
would be labeled as outliers. This method retains all the points
that are somewhat planar, and hence returns regions that could
be realistically stepped on by the robot. However, it runs the risk
of ignoring non-planar obstacles, potentially resulting in a point
cloud with holes. While we do not purposefully place non-planar
obstacles for this approach, these holes are expected to eventu-
ally be covered up as the map is built and updated as the robot
moves around.

Our procedure results in a 95% reduction in data provided
by the out of the box vision sensor. This reduced data is stored
in an octree [19] for efficient searching through the cloud.

3.2 Short-Term Robot-Centric Map
A downside of relying on a single camera for footstep ad-

justments is the requirement to build an internal map because
not all footholds are visible from a single frame. Because the
camera is mounted on a legged robot that continuously interacts
with the environment, the resultant data is noisy and incomplete.
Thus, we focus on mapping just the vicinity based only on recent
data. We use a variant of the Generalized Iterative Closest Point
(GICP) [20], where the older the data is, the less prominent the
point cloud data can be in affecting the scores of the footsteps.
Furthermore, all the data is relative to the moving global inertial
frame, a projection of the robot frame towards the ground. Also,
data outside a pre-defined vicinity are removed from tracking.

This approach is effective primarily because of two reasons.
First, it allows very little data to be stored in memory at all times.
Without impacting ICP performance due to a lack of points, the
map can still be stitched within a time limit. Second, by relying
more on recent sensor data and forgetting old ones, the robot can
still effectively use the built map without having to worry about
biasing issues and potential errors from the transformation ma-
trices continuously propagating in the map and having a negative
impact.

3.3 Footstep Scoring
Receiving the nominal footstep positions and using the in-

formation from the map built in Sub-section 3.2, footstep scores
are found for not only the nominal positions, but also potential
positions within a predefined radius. The method for determin-
ing a cost for a given footstep is identical for the nominal position
and the potential positions. After a complete assessment, the cost
is clipped between 0 and 1. A cost of 0 has no impact on the pro-
ceeding optimization, allowing the problem to freely choose the
footstep position, while that of 1 requires the opposite from the
optimization problem.

Given a footstep or a point of interest (POI), we search
for neighboring points within a pre-defined radius while keep-
ing track of the Euclidean distance between the POI and the
neighbor. 8 semi-random points are found, where 4 points are

neighbors that are farthest away, while the other 4 points are
randomly selected under a Gaussian distribution. In cases when
rising/falling edges are among the neighbors, we create another
point that is moved away from these edges by a selected magni-
tude, resulting in potentially 9 points. In the case that there are
not enough neighbors to conduct a thorough cost analysis on that
POI (i.e. a significant dearth of points) the terrain is assumed flat,
resulting in a minimum cost of 0.

After locating all viable footsteps which is a union of the
given footstep and its neighbors previously obtained, a cost as-
sessment is done using a region of interest (ROI) identified using
the neighbors. Costs for each POI and its neighbors are found by
summing the individual scores of the slope, friction, and curva-
ture of the ROI:

αPOI,i = ∑wmsm (4)

where wm are the weights for the different scores obtained by
the slope, friction, and curvature, while sm is the score itself.
i = 1, · · · ,8 or 9 and m ∈ {slope, friction,curvature}.

To calculate the slope, friction, and curvature, we conduct a
Principal Component Analysis (PCA) on the region. For slope,
a normal vector is found by solving for the eigenvectors of the
covariance matrix of the region. The normal vector’s offset to
the global Z axis (perpendicular to the ground) is compared, and
assuming the offset is less than a pre-defined threshold, the off-
set in radians is returned. This offset value is used as sm, where
m = slope, resulting in a plane perpendicular to the Z axis allow-
ing the most freedom to the proceeding optimization. It is be-
lieved that a slope closer to zero will provide a “safer” foothold
position for two reasons 1) small inclines decrease the chances
of slipping because the large ground reaction forces to counter
act gravity are all normal to the plane 2) higher inclines require
greater precision of terrain height estimation and end effector po-
sitioning because with higher inclines the terrain heights change
dramatically which can cause early or late ground collisions with
the end effectors if the end effector is not positioned correctly.

For calculating friction of the ROI, we use the standard devi-
ation of the ROI along its normal vector, and use that as sm where
m = friction. Such calculations are simple, and allow us to avoid
theoretically completely flat terrain, which have the potential to
be more slippery than those that are not completely flat. In our
formulation we prioritize ROI’s with larger calculated friction
coefficients.

Lastly, the curvature of the ROI is estimated by the relation-
ship:

κ =
λ0

λ0 +λ1 +λ2
(5)
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where λ0 ≤ λ1 ≤ λ2 and λ are the eigenvalues of the covariance
matrix. For the same reasons as the slope calculations regions
with larger curvatures are categorized as less “safe” than areas
with smaller curvatures. Identical to the slope and the friction,
the curvature score is directly used as sm and weighted by wm
accordingly for our purposes.

The full algorithm and the scoring mechanism is shown in
Algorithm 1 and 2. Some of the trivial co-routines are not ex-
plained for conciseness of the paper. We believe that the three
selected scoring criteria are sufficient to correctly categorize a
region as “safe” or not.

Algorithm 1 Overall Vision Algorithm
1: procedure VISIONMODULE(pnom)
2: Pxyz← GetPointCloud()
3: Pxyz← PreprocessPointCloud(Pxyz)
4: Pxyz← BuildShortTermMap(Pxyz)
5: for i = 1, · · · , 8 do
6: (αPOI,i,0, pext,i)← ScorePOI(pnom)
7: for j = 1, · · · , len(pext,i) do
8: αPOI,i, j← ScorePOI(pext)

9: m← GetMinIndex(αPOI)
10: pxyz← (pnom

⋃
pext)(m)

11: αmin← αPOI(m)
12: return (pxyz,αmin)

Algorithm 2 Footstep Scoring Algorithm
1: procedure SCOREPOI(pxyz)
2: AROI ← SearchRadius(pxyz)
3: pext ← GetSemiRndNeighbors(AROI)
4: (Λ,V,C)← PCA(AROI)
5: (vnormal ,sslope)← GetSlope(AROI ,V )
6: s f riction← GetFriction(AROI ,vnormal)
7: scurvature← GetCurvature(AROI ,Λ)
8: return (∑sslope, f riction,curvature, pext)

4 TRAJECTORY OPTIMIZATION
The trajectory algorithm presented in this paper builds on

the algorithms in [21] and [10]. The problem is discretized into
a discrete number of optimization parameters that fully describe
the continuous time trajectory. The set wc describes the CoM
trajectory, wu describes the ZMP, and wp describes the x and y

location of each foot.

wc = [0a1, ...,
4a1, ...,

0an, ...,
4an]

T

wu = [1λ 1, ...,
4
λ 1, ...,

1
λ n, ...,

4
λ n]

T

wp = [1 p1, ...,
4 p1, ...,

1 pm, ...,
4 pm]

T

(6)

Where n is the number of polynomials that describe the trajec-
tory and m is the number of footsteps to be optimized. jai ∈ R2

describes the i-th polynomial’s j-th coefficient for both x and y,
j
λ i ∈ R describes the j-th foot’s percentage of the total load at

the time of the i-th polynomial, and j pi ∈ R2 describes the j-th
foot’s x and y position for the i-th step. Using this parameteriza-
tion of the problem it becomes relatively simple to compute all
required dynamics of the robot at any given time. Given,

Ai = [0ai,
1ai,

2ai,
3ai,

4ai, ] T = [t0, t1, t2, t3, t4]T (7)

the CoM position, velocity, and acceleration can be computed by
the following:

r(t) = AiT

ṙ(t) = AiṪ

r̈(t) = AiT̈
(8)

The ZMP can also be calculated with the following formulation.

u(t) =
4

∑
f=1

f
λ i pm, f (9)

Given that the duration of the polynomials and the step times
are known it can be assumed in (7), (9) and for the remainder of
this paper that the correct optimization parameters are chosen
from the sets wc, wu, and wp given a time t. Fig. 3 provides
a broad overview of the structure of this optimization problem
whereas the subsequent sections give a brief explanation of each
component.

4.1 Cost Functions
4.1.1 Acceleration This cost minimizes the total ac-

celeration of the CoM. Prioritizing this cost creates smooth natu-
ral motion while minimizing the effort required by the actuators.

θa‖r̈(t)‖2 (10)

The gain θa is used to change the amount of effect this cost will
have on the overall optimization.
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FIGURE 3. AN OVERVIEW OF THE TRAJECTORY OPTIMIZA-
TION ALGORITHM

4.1.2 Loading The optimal loading cost chooses con-
servative trajectories for the robot and was first introduced in
[10]. This cost compares each foot’s loading condition ( j

λ i) to
the foot’s optimal loading condition (λ ∗(i, t)). The optimal load-
ing condition balances the load between all feet that are currently
on the ground. This will create a center of pressure directly in the
middle of the support polygon.

θl(
j
λ i−λ

∗(i, t))2

where, λ
∗(i, t) =

Ci(t)

∑
4
i=1 Ci(t)

(11)

The gain θl is used to change the amount of effect this cost will
have on the overall optimization.

4.1.3 Foot Placement The foot placement cost tries
to minimize the distance between the location of the optimized
foot location j pi and the desired foot location j p∗i chosen by the
vision algorithm. The gain α also comes from the vision algo-
rithm and is bound between 0 and 1. Notice that when α is 0
this cost will have no effect and the foot placement will only be
chosen based on the previously mentioned costs.

θp(eα −1)‖ j pi− j p∗i ‖2 (12)

The gain θp is used to change the amount of effect this cost will
have on the overall optimization. Originally, a linear form of the
cost was tested but produced undesirable results. If θp was set too
low then this cost would be ignored regardless of α , however if
θp was set to high this cost would dominate regardless of α . We

found that it was extremely difficult to tune θp with a linear cost
in α . Through trial an error a heuristic exponential cost in α was
found to produce the desired results of balancing the importance
of the costs through the vision score α .

4.2 Constraints
4.2.1 Continuity The following is an equality con-

straint that ensures continuity between polynomials.

AiT − 0ai+1 = 0

AiṪ − 1ai+1 = 0
(13)

4.2.2 ZMP dynamics The dynamic model used in this
algorithm is the well known ZMP equation shown in (14). The
values c̈z and cz represent the Z acceleration and position of the
robot respectively. These values are pre-computed based on the
average z height of all the feet at a given time.

r̈(t) = f (wc,wu,wp, t) =
g+ c̈z

cz
(r(t)−u(t)) (14)

The equality constraint (15) ensures that the optimized trajec-
tory satisfies the ZMP dynamic model to a satisfactory tolerance.
Simpson’s rule bounds the error by ∝ (tk+1− tk)4 over the inter-
val tk+1 to tk.

AT̈ − f (wc,wu,wp, t) = 0 ∀t ∈ tk,
tk+1− tk

2
, tk+1 (15)

4.2.3 Kinematic The inequality constraint described
by (16) assures that the relationship between the CoM position
and the i-th foot position is bound by a box with dimensions rxy.
The value rxy must be set based on prior knowledge of the robot’s
kinematics.

−rxy < vi− r(t)+ pi(t)< rxy (16)

Where vi is the vector from the robot CoM to the i-th foot in the
robot’s nominal pose.

4.2.4 Loading The inequality constraint described in
(17) bounds all feet on the ground between 0 and 1 and all feet
off of the ground are forced to be zero. This ensure that no leg
in a swing phase carries any load. The equality constraint (18)
makes certain that all of the leg’s loading conditions add up to 1,
meaning that all load bearing legs are supporting 100 percent of
the weight of the robot.

0 < j
λ i <Ci(t) (17)
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∑
j
λ i = 1 (18)

If both (17) and (18) are satisfied than the ZMP is defined to lie
within the support polygon.

4.3 Stitching

Each user input creates a nominal straight line trajectory.
The nominal trajectory is created simply by moving along the
velocity vector given by the user input until time t f (the final time
of the optimization problem). There are two points of interest
along this trajectory: the point at ts1 , where ts1 is the time right
after all feet have finished their first step and the point at t f . Each
trajectory solves for the next 8 steps, two steps for each foot, with
the desired footsteps being provided by the vision algorithm. The
final CoM position is set to the location of the nominal trajectory
at time t f and the velocity is set to zero. Only the first step of
each foot is allowed to be an optimization variable whereas the
last step for each foot is set to the location provided by the vision
algorithm. The final solution will create a trajectory that brings
the robot to a complete stop in a nominal pose after taking two
steps with each leg.

If a user input is provided another optimization problem will
be created for another 8 steps. A new inertial coordinate sys-
tem is created with it’s origin corresponding to the location at ts1
along the previous optimization problem’s nominal trajectory, as
shown in Fig. 4. The initial conditions for the new optimization
problem are the CoM position, CoM velocity, and footstep loca-
tions at ts1 . All of these values are transformed into this new coor-
dinate system. The previous trajectory will only execute until ts1
upon which the FSM will start executing the new trajectory. This
pattern will occur until no more user inputs are detected and the
robot will come to a complete stop. Using a local inertial frame
rather than a global inertial frame helped reduce solve times by
warm starting the optimization problem with the solution from
the previous optimization problem.

This stitching method only uses half of the solution from
each optimization problem. There are methods such as path reg-
ularization [22–24] that use the entire or nearly entire solution of
the computed optimization problem, making these methods more
efficient. However, these methods require that a solution to the
optimization problem is found before the previous problem has
completed execution with failure to do so resulting in a crash.
Unfortunately NLP’s do not provide bounds on solve times and
for this reason we opted to use a less efficient method in order
to guarantee safety of the robot. Every trajectory that is created
during our algorithm is assured to have a safe and viable stopping
point meaning that if a solution to the next optimization problem
fails the robot will still be able to safely stop.

5 RESULTS
This section discusses the results from simulation of the

ALPHRED V2 system in V-REP [25]. The entire code was
written in Python 2.6 implemented on an Intel NUC Quad-Core
i7-6770HQ with 8 GB of DDR4 RAM at 2400 MHz. Interior
Point Optimizer (Ipopt) [26] was used as the non-linear solver
for the TO thread with PyIpopt as the Python wrapper. The sim-
ulation camera mimics the Intel Realsense D435. In simulation
we tested the algorithm with flat obstacles varying in different
heights, sizes, and orientations which can be seen in the supple-
mentary video. The discussion below explains in detail a single
test of the robot going over a 0.04m tall obstacle.

In the simulation the robot trots 1.0m and then steps onto
and over a 0.04m obstacle. The step length was set to 0.25m
with a step time of 0.6 seconds giving the algorithm 1.2 seconds
to solve before the next trajectory. During the duration of this
task the algorithm stitched together eight trajectories with an av-
erage solve time of 400ms (100ms for the vision and 300ms for
the TO) per trajectory. Fig. 5 - 7 are three snapshots of different
moments during the simulation that best highlight the novelty
of this algorithm. The figures show the nominal footsteps pro-
vided by the footstep planner (blue squares), the modified foot-
steps provided by the vision planner (green diamonds), and the
optimized footsteps provided by the TO problem (red crosses).
Fig. 5 is a footstep plan during the first 1.0m of travel. During
this time the terrain is completely flat with no dangerous footstep
locations, this is indicative of the fact that the vision algorithm
did not modify the nominal footsteps and provided a low cost on

FIGURE 4. NOMINAL TRAJECTORY SHOWN BY BLUE
DASHED LINE. A) SIDE VIEW, B) TOP VIEW
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all footstep. This allowed the footsteps to be highly optimized
shown from the optimized footsteps deviating dramatically from
the modified footsteps.

FIGURE 5. FOOTSTEP PLAN FOR FLAT TERRAIN SHOWING
DEVIATION FROM THE MODIFIED FOOTSTEPS PROVIDED BY
VISION AS OPTIMIZED DYNAMICS ARE PREFERRED OVER
LANDING AT THE MODIFIED FOOTSTEPS

In Fig. 6 the robot is planning on stepping onto the obstacle
(dashed purple box) with the front two legs. The back two legs
are in safe locations and are thus treated as they were in Fig. 5.
However, the front two legs must now be modified from the nom-
inal positions in order to provide the robot with secure footing.
Due to their precarious position both the front legs have a high
cost forcing the optimization algorithm to choose the position se-
lected by the vision algorithm. An interesting result from this is
that the back feet locations are now changed to try to counter act
the dynamics created from modifying the front feet. This is most
clearly seen by the back left’s optimized footstep. The change
in the back left foot’s position mirrors that of the constrained
front foot’s location. This is a very powerful result where the
optimization algorithm naturally tries to account for the adverse
dynamics created by traversing safely over the obstacle. Simi-
lar phenomenon are seen in Fig. 7 where now the back feet are
modified due to the obstacle and the front feet are free to be op-
timized.

6 CONCLUSION
In this paper we introduced a vision algorithm and NLP

that could continuously produce optimal CoM trajectories and
foothold positions for a legged robot over varying terrains. By
developing a vision algorithm that locates and scores potential
foot positions we were able to encode the inherently discrete
problem of footstep selection into a continuous time cost that
could naturally be added to our NLP formulation. We believe the

FIGURE 6. FOOTSTEP PLAN FOR STEPPING UP ONTO AN
OBSTACLE WITH THE FRONT TWO LEGS, WHERE THE OPTI-
MIZED FOOTSTEPS ADHERE TO THE MODIFIED FOOTSTEPS
PROVIDED BY THE VISION BECAUSE SAFETY IS PREFERRED
OVER FOLLOWING A GIVEN FOOTSTEP TRAJECTORY

FIGURE 7. FOOTSTEP PLAN FOR STEPPING DOWN FROM AN
OBSTACLE, WHERE THE FRONT TWO LEGS OPTIMIZED FOOT-
STEPS DO NOT ADHERE TO THE MODIFIED FOOTSTEPS BE-
CAUSE OF LOW RISK WHEREAS THE BACK LEGS ON THE OB-
STACLE CONTINUE TO FOLLOW THE MODIFIED FOOTSTEPS
TO ENSURE SAFETY

results of this paper show that this type of problem formulation
has great potential in the area of legged robot trajectory optimiza-
tion, however future work needs to be done to further investigate
this methodology. We would like to further investigate the cri-
teria determining whether a footstep location is “safe” or not by
quantifying the effects of each criteria on the robot’s ability to
successfully track the desired trajectory. The gains in both the vi-
sion algorithm and NLP were hand tuned, in the future we would
like to use a ML algorithm to perform the scoring for the vision
algorithm similar to those found in [6] and [27]. Currently, the
algorithm has only been tested in a simulated environment, and
in the future we plan on testing the algorithm on the real-world
robot.
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