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This paper describes Team THOR’s approach to human-in-the-loop disaster response robotics for the 2015
DARPA Robotics Challenge (DRC) Finals. Under the duress of unpredictable networking and terrain, fluid
operator interactions and dynamic disturbance rejection become major concerns for effective teleoperation.
We present a humanoid robot designed to effectively traverse a disaster environment while allowing for a
wide range of manipulation abilities. To complement the robot hardware, a hierarchical software foundation
implements network strategies that provide real-time feedback to an operator under restricted bandwidth using
layered user interfaces. Our strategy for humanoid locomotion includes a backward-facing knee configuration
paired with specialized toe and heel lifting strategies that allow the robot to traverse difficult surfaces while
rejecting external perturbations. With an upper body planner that encodes operator preferences, predictable
motion plans are executed in unforeseen circumstances. These plans are critical for manipulation in unknown
environments. Our approach was validated during the DRC Finals competition, where Team THOR scored
three points in 18 min of operation time, and the results are presented along with an analysis of each task. C©
2016 Wiley Periodicals, Inc.

1. INTRODUCTION

The recent DARPA Robotics Challenge (DRC) Finals re-
quired a complete robotic system that can manipulate
human tools and move about in an unstructured environ-
ment. The Finals incorporated a set of eight consecutive
manipulation challenges outdoors on rough pavement. We
developed the THOR-RD (Tactical Hazardous Operations
Robot–Rapid Development) robot, shown in Figure 1, as an
evolution of the hardware from the Trials, to compete in the
challenge. With it, we developed a versatile software plat-
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form for planning and locomotion. The competition also fo-
cuses on high-performance human robot interfaces (Yanco
et al., 2015) as the link established between the robot and
a human operator underwent varying network conditions,
including blackout periods.

The variability in the communication channel requires
a corresponding variability in the teleoperation control
mechanisms. Sliding between low-level and high-level con-
trol is a target for development of many DRC teams (Mur-
phy, 2015), typically understood in the context of semiau-
tonomy (Heger & Singh, 2006). Semiautonomous behavior
becomes a critical aspect for disaster response, where the
robot agent can observe local information with high fidelity,

Journal of Field Robotics 34(4), 775–801 (2017) C© 2016 Wiley Periodicals, Inc.
View this article online at wileyonlinelibrary.com • DOI: 10.1002/rob.21672



776 • Journal of Field Robotics—2017

Figure 1. THOR-RD enters the indoor environment after opening the door in the DRC Finals using the backwards-knee configu-
ration.

but the remote operator can only furnish a representation
in their mind.

When deploying high degree of freedom (DOF) robots
in unknown environments, human operators are often faced
with challenging edge case conditions. Robustness in the
face of uncertainty, a problem throughout robotics research
history (Slotine, 1985), becomes even more important in dis-
aster scenarios. Motors can break, practiced arm plans can
fail, and the terrain can prove more difficult than imagined.
Algorithms that are nimble enough to recover and adapt
become major requirements for disaster response robots
(Burke, Murphy, Rogers, Lumelsky, & Scholtz, 2004).

In this work, we present our approach for the DRC Fi-
nals, which has been extended in many ways since the DRC
Trials (Yi et al., 2014). The hardware is more powerful and
more robust to endure much longer test runs without hu-
man intervention. The locomotion controller is improved
so that the robot can walk over unstructured surfaces while
rejecting external perturbations. The arm controller is gen-
eralized so that it can be used for totally unknown tasks
that require a large workspace. Finally, the communica-
tion and remote operation software is designed to handle a
bandwidth-throttled link with blackouts.

The paper proceeds as follows. Section 2 describes the
hardware platform we used for the DRC Finals. Section 3
describes the software for networked communication and
human-robot interaction. Section 4 explains the manipu-
lation framework, and Section 5 discusses the locomotion
controller, rough terrain negotiation, and full-body behav-
iors. Section 6 presents results from the DRC Finals held in
June of 2015. Finally, we conclude with lessons learned and
a discussion of future work.

Figure 2. With its dimensions (shown in millimeters), the
THOR-RD robot represents a large-scale humanoid robot that
can work in areas designed for adult humans.

2. HARDWARE ARCHITECTURE

THOR-RD, shown in Figure 2, is a full-sized humanoid
robot that stands 1.5 m tall and weighs 54 kg, with a
wingspan of 1.95 m. THOR-RD represents an upgrade in
several ways from the THOR-OP of the DRC Trials. It has
33 degrees of freedom (DOFs), with 7 DOFs in each arm, 6
DOFs in each leg, 3 DOFs in one hand, 2 DOFs in the waist,
and 2 DOFs in the neck. As in the DRC Trials, the hardware
of THOR-RD is composed of modular actuators and stan-
dardized structural components, which makes it easy to test
different configurations and service damaged components.

The biggest improvement over the THOR-OP platform
from the DRC Trials is a redesigned leg, where the knee
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Figure 3. The gripper design was iterated to reduce complexity and weight while allowing for general grasps. (a) Two-fingered
gripper with a fixed palm. (b) Modular three-fingered gripper. (c) Final version with a slim profile to minimize self-collision.

joint is powered by two custom actuators to have sufficient
torque for standing up from the ground and traversing
uneven terrain. The hip joints are redesigned to ensure a
wide range of motion while reducing self-collision. Finally,
previously exposed data and power cables are rerouted
cleanly to minimize the risk of losing connection.

As a commercial product, the THOR series robot was
adopted by a number of teams for the DRC Finals compe-
tition, but we heavily customized our version according to
our design philosophy. Our customizations include end ef-
fectors, arm dimensions, electrical interface modules, and
minimal sensors. The most unique aspect of our platform
is the asymmetric arm setup. One arm is equipped with
an actuated gripper and the other arm has a passive hand
consisting of two metal rods. To keep the distances from
shoulder to end effectors roughly the same for each arm,
we use asymmetric arm dimensions as well. The longer
arm with the passive end effector includes a shorter upper
arm and lower link lengths.

2.1. Gripper

We used lightweight custom-made grippers with Dy-
namixel actuators for both the DRC Trials and Finals. At the
Trials, we deployed a two-finger gripper with a fixed palm.
Each finger is an underactuated two DOF four-bar linkage
that is able to conform around a wide range of objects with
secure grips (Rouleau & Hong, 2014). In addition, we used
modular wrist attachments with various task-specific pas-
sive appendages such as a rod or a hook.

For the DRC Finals, field operators can no longer re-
configure the gripper between tasks. A versatile yet robust
hand is required to handle all the given tasks while surviv-
ing contacts with objects throughout an entire run. Because
it is hard to design an actuating hand that is both lightweight
and robust against impacts, we decided to adopt an asym-
metric end effector setup. We use a lightweight active grip-
per in one arm and a robust passive hand in the other, and
only use the active gripper when the grasping is crucial for

the completion of the task. As we cannot use task-specific
appendages anymore, the active gripper needs to be more
versatile. The main shortcoming of the previous gripper is
that it has only two active fingers in one side, so the palm
must be aligned precisely with the gripping object to secure
the object with full force. Also, as only one side of the hand
has actuating fingers, it is hard to pick up large objects such
as the wooden pieces in the Debris task.

We designed a new three-finger gripper with two main
goals. It should be able to grab a wide range of objects
while tolerating some positioning error, and it should be
lightweight with a short gripping position to keep the wrist
actuator load low. The iterations of the new gripper are
shown in Figure 3. The initial design utilizes a modular fin-
ger design that uses the wrist yaw actuator as a structural
component of the assembly, with each of the modules at-
taching to it. The modularity greatly helped in finding the
optimal location of fingers from iterated testing with proto-
type hands.

2.2. Foot

The foot is the main contact point of a humanoid robot,
and its properties, such as geometry and sole material, can
greatly affect the stability of the robot. For this reason, some
humanoid robotics competitions, such as RoboCup, set lim-
its on the foot size and the center of mass height of the robot
to keep the bipedal locomotion challenging. The DRC, on
the other hand, has no such rules and it even allows for
statically stable nonhumanoid robots, so there is no reason
not to equip the robot with large feet for more stability.

Still, most humanoid robots have fairly small feet be-
cause they look more natural and they help in traversing
uneven terrain by increasing possible footholds. Smaller
feet require smaller stride lengths to step between differ-
ent surfaces. The original THOR-OP robot uses a relatively
small foot with a thick footsole that works well for flat
surfaces and is necessary for uneven terrain because the
THOR robots have fairly short leg dimensions compared to
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Figure 4. Foot designs for the THOR-RD robot needed to balance a large support region with mobility concerns. (a) Stock THOR-
OP foot. (b) Prototype foot with wide support area and internal damper. (c) Large-sized foot made of carbon fiber to reduce weight.
(d) Stock THOR-RD foot. (e) Adjustable foot with bolt on supports.

obstacle sizes. However, the DRC Finals require the utmost
stability from the robot because the robots can be seriously
damaged from a single fall due to the lack of safety mea-
sures. Some teams have even decided not to walk most of
the time; we have decided to look for foot design changes
that keep all the functionality of the robot while making it
more stable.

We tried a number of foot design iterations, shown in
Figure 4. We prototyped a big foot that almost fully covers
the cinder blocks of the rough terrain. Such a large foot ham-
pered locomotion performance due to timing issues upon
landing and the high leg inertia. We also were worried about
the possibility that the gas pedal area of the Polaris vehicle
would pose collision issues with large feet. The final design
incorporates additional support along the foot edges. The
total width and height of the foot can be adjusted easily
on the field by remounting the additional support. Unfor-
tunately, we found that the Polaris pedal area leaves little
room for foot size expansion, and did not use oversized feet
or bolt on supports. In the future, we would like to provide
quantitative measurements to rigorously guide our design
decisions.

2.3. Sensors and Electronics

Our main design policy for the THOR-RD platform is to
keep it simple and reliable, so we keep the sensor suite
nearly unchanged from the Trials. A Microstrain 3DM-GX4-
25 inertial sensor provides raw accelerometer and gyro data
along with filtered pose estimates. Four independent RS485
chains provide communication to the four chains of motors
via a USB interface. Two ATI Mini58 force-torque sensors
on the feet aid balancing algorithms. One Logitech C920
HD Pro USB webcam mounted on the head captures audio
and video. For more situational awareness, the left wrist is

equipped with a Logitech C905 Webcam. For depth per-
ception, two Ethernet-based Hokuyo UTM-30LX-EW LI-
DAR sensors are utilized. A servo motor pans a vertically
mounted LIDAR in the chest. A head-mounted LIDAR
provides 2D localization cues, and is moved by the head
actuators.

To diversify sensing channels for perception, our team
tested the usability of the Kinect 2.0 RGBD sensor for
providing two-dimensional (2D) colored depth readings.
The Kinect 2.0 works based on the time of flight princi-
ple (Fankhauser et al., 2015), and our extensive outdoor
tests yielded promising results. Even though most pix-
els provided meaningless noise under bright sunlight, the
center area gave reasonable readings for nearby distances
(< 0.8 m). In general, RGBD sensors have an advantage
compared to the LIDAR scanner. They provide 2D depth
information at a similar rate to the LIDAR, which provides
1D depth information. The alignment between depth and
color information is relatively well established, which is an-
other merit. The sensor was omitted from the Finals due to
weight and power supply concerns, however.

THOR-RD’s computer and sensors run on a portable
12 V 120 Wh lithium ion battery that provides more than 3
hours of continuous operation in practice. The motors are
powered with two 24 V 488 Wh lithium polymer batteries,
which are doubled from the 288 Wh batteries we used for
THOR-OP. This big battery increase ensures continuous op-
eration for over an hour in the worst case. In practice, the
robot motor system consumes less than 250 W during walk-
ing, and the batteries provide enough energy for hours of
testing.

Instead of two 1.6 GHz AMD computers in THOR-
OP for the Trials, we use a single Core i7 Haswell NUC
computer for onboard processing. The Intel CPU provided
more than twice the computation ability with half the power

Journal of Field Robotics DOI 10.1002/rob
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Figure 5. The software architecture centers around the reli-
ability concerns of the DRC’s network channels. Perception
data ran through the unreliable channel, while commands and
shared memory were synchronized over the reliable channel.

consumption of the AMD computer. Due to our minimalis-
tic sensor setup and efficient motion-control code, a single
computer was sufficient to handle all the motion and per-
ception loads in real time. We use another NUC for the field
computer that logs sensory data for later analysis.

3. SOFTWARE ARCHITECTURE

Our software framework has its roots in the RoboCup in-
ternational robotic soccer competition (Yi et al., 2015). It
provides a coherent way of organizing and executing pro-
cesses for motion planning, sensor processing, autonomy,
and communication interfaces. It is designed to be highly
modular to support a variety of robotic hardware and be
quickly ported on new humanoid platforms with minimal
effort. Figure 5 depicts how processes are segmented by
role and the way they interact with shared memory and the
network channels.

3.1. Software Modules

To avoid a single point of failure, we maintain a number of
separate processes that handle specific functions of the sys-
tem. These processes can be restarted individually during
the operation in case of failure. However, the interprocess
communication can become a critical component. Since the
robot uses a single computer with the Linux operating sys-
tem, Unix domain sockets provide a viable transport mech-
anism for sending messages locally. Data messages are se-
rialized using the MessagePack specification, and they can
be directed either locally or remotely to other processes, a
logging system, or a remote operator UI. Complementing
the message passing system was a shared memory layout,
where device drivers could read and write values, and con-
figuration settings could be mutated on the fly. This shared

memory approach is another advantage of a single com-
puter design, where synchronization issues are avoided.

At the lowest level, there are a number of raw I/O pro-
cesses. The motor control process publishes to four chains of
the Dynamixel actuators at 120 Hz. The IMU process reads
accelerometer, gyro, and filtered orientation data at 100 Hz.
The camera process grabs camera frames from head and
wrist cameras at 15 and 5 Hz, respectively. The auditory
process monitors the microphone signal levels for volume
spikes.

At the next level, we have various perception processes
and upper- and lower-body motion controllers. Perception
processes accumulate the sensory data, build a 3D mesh,
and detect features before sending the results to the re-
mote operator. Lower- and upper-body motion controllers
receive high-level commands and generate motions for the
lower or upper body to complete locomotion or manipula-
tion tasks.

Finally, a number of finite state machines (FSMs) gov-
ern the high-level behavior of the robot. An overarching
BodyFSM controls the underlying MotionFSM, ArmFSM, and
HeadFSM modules. Each state machine is updated at 120 Hz
to match the motor update rate. The MotionFSM handles
the locomotion and balancing of the robot, the ArmFSM runs
the upper-body control, and the HeadFSM controls head mo-
tions. The BodyFSM transitions among waypoint following,
standing, and driving modes by sending signals to the other
state machines. Once in a standing mode, the ArmFSM con-
trols arm states, such as valve prepositioning, tucking arms,
and entering teleoperation. Transitions are commanded re-
motely and forwarded via the remote procedure call system.

We tested our approaches using the Webots1 simulator
(Michel, 2004). The physical model in the simulation helped
to identify torque limits for motions and validate dynamic
motions before attempting on the physical robot. The simu-
lated physics was updated at 8 ms, while the simulated sen-
sors were updated at the same rates as the physical robot.
Our operator systems could interact with the simulator or
the real robot with minor configuration tweaks.

3.2. Communication Architecture

The DRC Finals allotted two network channels over which
operators could communicate with the robot. A high-
bandwidth channel allowed unidirectional packet flow
from the robot to the operator with bandwidth around
300 megabits per second. The channel encountered signif-
icant blackout periods for “indoor” tasks, where all pack-
ets were dropped, in between 1 s bursts of no dropped
packets. For “outdoor” tasks, no packets were dropped.
A low-bandwidth channel operated at 9,600 bits per sec-
ond bidirectionally, where 1,200 bytes per second could be

1Cyberbotics Ltd. Webots Commercial Mobile Robot Simulation
Software. http://www.cyberbotics.com
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Figure 6. The network usage during 1 s high bandwidth open-
ings showed that lossless mesh data were ten times larger than
the high-resolution camera data.

transmitted from the robot to the operator, and another 1,200
bytes per second were allowed from the operator to the
robot. This reliable channel would buffer, not drop, pack-
ets, so sending packets above the bandwidth limit would
impact responsiveness.

3.2.1. High-bandwidth Architecture

We formed User Datagram Protocol (UDP) packets to trans-
mit data from the robot to the operator over the high-
bandwidth unidirectional channel, which requires no ac-
knowledgment from the operator. We fragmented the UDP
packets to 1,462 bytes in order to comply with the packet-
filtering system, which allowed packets no larger than
the maximum transmission unit (MTU) of 1,500 bytes. We
uniquely tagged each UDP packet with a 10 byte preamble
of information to reassemble the fragmented packets. With
an 8 byte UDP header and a 20 byte IP header, we could
transmit 1,462 bytes per fragment.

The high-bandwidth channel carried a cache of LIDAR
returns to form a 2.5D (height map) mesh (Hebert et al.,
2015) and camera frame streams. We chose to send com-
pressed camera images at 15 Hz under outdoor conditions
and 3 Hz under indoor conditions; we sent uncompressed
mesh data at 1 Hz outdoors and 3 Hz indoors. Figure 6
shows the received data over time of this high-bandwidth
data.

Since the 1 s window could not be predicted, a uniform
3 Hz attempted send rate allowed data to be sent during
the unpredicted 1 s opening periods. Additionally, since
the communication channel was implemented on a wireless
network, the packets may be dropped due to physical link
issues. We decided to burst send the same camera frame
three times (at 3 Hz) in case any fragment was dropped.

Figure 7. The upstream and downstream network usage over
the low bandwidth link shows the predominance of the head
camera information and the small size of the command packets.

The burst data had the same preamble tags, so data could
be assembled from any of the three bursts of data.

We failed to recover all three bursts of head camera
packets to form a camera frame only once in 112 burst at-
tempts when indoors in the second trial—we did recover
two bursts that time. The average head camera frame was 27
kB. The mesh data were markedly different, and we did not
use the burst mode. Since the amount of data was tremen-
dously large as shown in Figure 6, with an average of 360 kB
per chest LIDAR frame and 257 kB per head LIDAR frame,
we sent the cache only at the 3 Hz rate. We recovered all
three frames within the 1 s, opening only 24 of 59 attempts
for the head LIDAR and 45 of 92 for the chest LIDAR for an
aggregate rate of 45%. We recovered two frames 14 times for
the head LIDAR and 11 times for the chest. Thus, the repeti-
tive sending was tremendously valuable for large data so as
to never miss the 1 s opportunity to send a frame of sensor
information.

3.2.2. Low-bandwidth Architecture

The robot pose and nearby obstacles comprised the most
important feedback that the operator needed at regular in-
tervals. In case the robot came dangerously close to an obsta-
cle, the operator could immediately issue a stop command.
We encoded distance information that showed the nearest
obstacles in a polar view. Additionally, we sent volume in-
formation as a single byte by processing the microphone
stream.

Additionally, since regular camera feeds install much
more confidence in the operator, we pushed to include
camera images over the low-bandwidth link. By sending
a JPEG image compressed in gray scale at a 160 by 90 res-
olution with a quality of 40, we could augment the pose

Journal of Field Robotics DOI 10.1002/rob
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Figure 8. Feedback packets (a) were sent at three different rates, depending on how the cameras were enabled. When enabled,
low bit-rate head image packets (b) arrived every 2.5 s.

information with a camera feed. Similarly, the wrist camera
was compressed as a low resolution (80 by 60) color image,
with quality 50. These reliable video feeds helped to save
time aligning the hand with the valve and walking around
in general.

Without camera images, the feedback was sent at 1 Hz,
and with the head camera this became 0.35 Hz; feedback
with the wrist camera was transmitted at 0.4 Hz. This feed-
back rate was modulated based on the actual size of the
compressed image, which varied between frames. We did
not wish to clog the channel, so the feedback would pause
if we calculated that the low bit-rate channel was clogged.
Shown in Figure 8 are histograms of the effective feedback
interval for all feedback packets, and for feedback with low
bit-rate head camera images in particular.

We utilized Transmission Control Protocol (TCP) pack-
ets on the low-bandwidth link to ensure that our commands
were received by the robot since TCP implements packet re-
sending and enforces order for proven reliability. Under the
ZeroMQ2 Request/Reply pattern, we commanded the robot
with state machine events, target arm poses, and walk ve-
locities in a remote procedure call (RPC) fashion. For safety,
typical commands invoking shared memory or state ma-
chine events adhered to a structure defining valid memory
segments that would not crash the robot. However, unsafe
commands were allowed, but they were encoded as only
the ASCII text of the command, executed as a protected Lua
call to prevent crashes. Over the command channel, entire
subsystems such as the motion, LIDAR, camera, or feed-

2P. Hintjens. (2010) ZeroMQ: The Guide. http://zguide.zeromq.
org/page:all

back could be stopped and restarted in case of failures. The
bandwidth usage of typical remote shells vastly reduced the
available channel bandwidth, so this process of restarting
via RPC was a critical added feature. The bandwidth usage
of the low-bandwidth channel, including sensor readings,
state feedback, and commands, is shown in Figure 7.

3.3. User Interface

The user interface was structured as a hierarchy of con-
trol, shown on the operator side in Figure 5. At the lowest
level, the operator interacts at the command line to issue
commands, check the robot state, and observe sensor data.
At the highest level, a graphical interface continuously dis-
plays sensor data and state feedback while allowing for
mouse clicks and motion previews. In between are scripts
that leverage models of the environment to execute primi-
tive motions and display task-specific state information.

3.3.1. Command Line Interpreter

The RPC system exposes low-level access to the robot via a
Lua-based command line interface (CLI). Here, the operator
incurs a high cognitive load (Goodrich & Schultz, 2007), but
it has the ability to inspect and modify joints, states, and
configurations.

Scripted autonomy aided in the driving task, where
the operators exclusively used the scripted motions for
joint level motions. The chopstick-based wrist would turn
the steering wheel by 45◦ increments, and the accelerator
pedal was pressed in a similar fashion using the ankle
pitch motor. In conjunction with the command line inter-
preter for head movements, the scripted autonomy reduced

Journal of Field Robotics DOI 10.1002/rob
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Figure 9. Virtual car parts provide a structured model of in-
teraction.

cognitive load and increased reliability. Pressing “j” or “l,”
for instance, moves the steering wheel back and forth while
simultaneously showing the user the angle of the wheel,
while [spacebar] activates the accelerator pedal. This pre-
cluded the possibility of disastrous typos in the interpreter
and reduced the lag between commands by eliminating typ-
ing in favor of hotkeys. The interactions with this interface
is shown in Figure 9.

3.3.2. Graphical User Interface

Our GUI consists of a number of configurable HTML5 doc-
uments that visually show a number of perception cues
utilizing both the low- and high-bandwidth channels. A
typical setup of the graphical interface during indoor navi-
gation, shown in Figure 10, uses one document for camera
streams and one for a 3D viewport.

The low bit-rate gray-scale image is displayed along-
side the high bit-rate camera image. On camera feed in-
terfaces like this, the low bit-rate image continuously up-
dates, while the high bit-rate image updates intermittently.
An interface dedicated to only the high bit-rate image was
used during outdoor network conditions when no black-
outs were encountered.

The main 3D viewport shows the current state of the
robot and the 2D obstacle indicator, which is updated using
the low-bandwidth channel, the 3D mesh of the environ-
ment, which is updated using the high-bandwidth channel,
and the target configuration of the robot, which is set by
the operator. The robot state indication shows the current
arm configuration and 3D pose of the robot in the recon-
structed 3D mesh of the environment. The remote operator
can move around the target configuration of the robot to
make the robot walk to that position.

The low-bandwidth channel helps the operator to see
the 3D pose of the robot and the 2D obstacles, which are
color coded, where green rods are far away and red rods
are nearby. A binning system is used to generate this ob-
stacle information. Each bin contains the nearest LIDAR
return within a certain field of view of the LIDAR (e.g.,
30◦–45◦ forms one bin, and 45◦–60◦ forms another bin).
These nearby points form a rough estimate of nearby obsta-
cle information for the remote operator both for avoiding
obstacles such as the door frame, and localizing with respect
to nearby walls. The robot did not utilize this information
for planning. When the robot is close to manipulation tar-
gets, the slowly updated 3D mesh can be used to finely
guide the manipulation.

During manipulation, planned arm movements are
previewed in the 3D viewport before the user allows ex-
ecution; this is a similar strategy to that employed by other
DRC teams (Johnson et al., 2015). Additionally, the inter-
face shows how the robot will move in advance when the
scripted motion is selected.

3.4. Perception

DARPA provided information about the competition en-
vironment ahead of time to the teams, but detecting and
registering poses of items in the environment, such as the
drill and valve, still proved challenging. However, much
of the environment, from walls to steps and rough terrain,
was planar, and registration of these planes was tractable
and could provide useful cues for motion planning and op-
erator awareness. For the manipulation tasks, the human
operator used many perception information sources under
the bandwidth restrictions, as automated grasping and ma-
nipulation proved complicated and untrustworthy.

3.4.1. Manipulation Vantage Points

Fine-grained manipulation tasks required many vantage
points for successful completion within a reasonable time
frame. Shown in Figure 11, the biggest source of confusion
for the operator was depth perception. Since the view from
the head could not give a sense of the distance to an object,
and with LIDAR data yielding noise in distance measure-
ments around 1 cm, more cues were needed.

The drill task in particular required fine-grained oper-
ator control. With the camera on the wrist of the robot, we
could align the wrist to look at the drill. By cropping the im-
age, we could even present the operator with a color image
stream during the indoor network conditions. With color,
fiducial markers such as colored zip ties and patterned tape
become immensely useful in aligning the gripper to the trig-
ger. With two perspectives, we reliably triggered the drill
during practice sessions in reasonable amounts of time.

To confirm that the trigger was pressed, we measured
the volume of ambient sound from the head and wrist via
microphones coupled with the camera. This reduced the
transmission from a sound stream into a single integer of
the level. We measured the level before and after attempting
to trigger in order to compare the relative sound levels, since
a powered drill adds significant noise.

3.4.2. Plane Detection

Planar objects such as walls, floors, and stairs play an im-
portant role in understanding the environment (Nishiwaki,
Chestnutt, & Kagami, 2012). In addition to localization cues,
the relative pose from these planar objects influences step-
ping strategies for maximum stability and arm plans to
avoid collisions. Our plane segmentation modules are de-
signed to provide the geometry, i.e., normal, distance, and

Journal of Field Robotics DOI 10.1002/rob
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Figure 10. The user interface provides a variety of perception cues, which includes the current configuration of the robot (shown
in gray rendering), the target configuration of the robot (shown in green rendering), 2D obstacles (shown in vertical rods), 3D mesh,
and high and low bandwidth video feeds.

boundary points, of detected planes from LIDAR scans or
colored depth images to facilitate the localization and loco-
motion of the robot.

We run a plane-detection algorithm on the onboard
computer, which continuously estimates the pose with re-
spect to walls. This helps the robot to approach a manip-
ulation target and to avoid collisions in the environment.
To identify multiple planes with arbitrary normals, cluster-
ing techniques have been commonly used (Chen, Taguchi,
& Kamat, 2014; Holz, Holzer, Rusu, & Behnke, 2011). We
chose to use the mean-shift clustering algorithm (Cheng,
1995) with an unknown number of clusters in the normal
space. As the motion of the robot was constrained, the cen-
ters of previously found clusters were used as the seeds for
the next frame. Connectivity in the projected 2D image was
also considered so as to distinguish different instances of
planes with similar normals. Figure 12 shows a plane seg-
mentation result of the wall and the ground using LIDAR
scans taken during the Finals.

We also use plane-detection algorithms on the operator
side to find safe 3D foothold positions for the rough terrain,
as shown in Figure 13. An automated region growing algo-
rithm computes the centroid and inclination of each surface
by optimizing a least-squares cost function. All the human
operator needs to do is click on a desired foothold position
on the surface.

4. MANIPULATION FRAMEWORK

Motion planning for the THOR-RD splits the upper-body
and lower-body control, where upper-body manipulation
routines are executed in a separate thread than lower-body
locomotion control. The upper body includes seven degrees

of freedom for each arm, as well as the waist yaw and pitch
controls. The upper body alone represents 16 degrees of
freedom (DOFs) available for any given manipulation task,
implemented with independent position-controlled motors.
The gripper functionality, utilizing current control, adds
fine-grained control for grasping. In this section, we de-
scribe how we generated arm motions for redundant DOF
arms using task-specific human preferences.

4.1. Optimizing Arm Plans with Human Preferences

For general purpose manipulation tasks, redundant DOF
manipulators can avoid singularities and greatly enlarge
the workspace (Hollerbach, 1985). However, resolving re-
dundancy for the closed-form inverse kinematics (Chang,
1987) from the 6D arm end effector pose includes an op-
timization problem for free parameters (Shimizu, Kakuya,
Yoon, Kitagaki, & Kosuge, 2008) that is hard to solve ana-
lytically.

Local Jacobian-based control (Siciliano, 1990) methods
often encounter issues at singularities (Klein & Huang,
1983), and a number of attempts have been made to avoid
this encumbrance (Buss & Kim, 2005; Chiaverini, 1997;
Lloyd & Hayward, 2001; Nakamura & Hanafusa, 1986).
Global planner approaches can avoid the singularity prob-
lems with local planners, but the global space can be in-
tractably large. These planners include searching (Cohen,
Chitta, & Likhachev, 2013) and random sampling (Stentz
et al., 2015) to generate motions for high DOF systems, pos-
sibly augmented by a local Jacobian controller (Weghe, Fer-
guson, & Srinivasa, 2007). Finally, optimization planners can
refine global plans, but often their seed trajectories limit the
ability to avoid undesirable trajectories in a local minimum.
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Figure 11. A secondary camera helps overcome the poor depth perception of the main camera. (a) Third person view. (b) The
main camera feed. (c) Secondary camera feed on the high bandwidth channel. (d) Secondary camera feed on the low bandwidth
channel.

Figure 12. Automatic plane detection from LIDAR scans for
localization.

These approaches can be problematic for long-term
general purpose teleoperation usage in disaster response
scenarios. Random search-based planners do not yield re-
peatable and predictable trajectories, thereby decreasing op-
erator confidence. Additionally, the large search space for
global planners can overburden the robot’s onboard com-
puter, which is constrained by both weight and power. An
optimization-based planner using a single cost function will
be suboptimal over a number of different tasks.

Our planner handles the redundancy of the manipu-
lator, makes the resulting motion predictable and suitable
for a given task, and lowers the complexity of the motion
planning. By incorporating human operator input into the
planning process for kinematic chains, high-level reasoning
such as obstacle avoidance or self-collision checks can be
embedded by following human intuition. Convex formula-
tions of these costs become tractable for optimization, and
initial trajectories are formed using an efficient Jacobian-
based approach.
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Figure 13. Semiautonomous selection of the footstep positions. (a) Original RGBD data. (b) Segmented planar surfaces. (c)
Admissible foot landing positions selected by the operator.

Planning for high-dimensional robots does present a
challenge in intuition for operators—complicated and unex-
pected motions may provide the optimal valid path. How-
ever, the operators are trained in many scenarios to under-
stand the types of strange motions that can result, and the
GUI presents a preview system before the robot executes
a path. Additionally, the global optimization can undo re-
strictive constraints from the user during initial trajectory
generation.

4.1.1. Task Space Motions

With a kinematic chain, motion paths q1:nt are planned in the
space of joint angles in time, R

nt ×nq , where nt represents the
number of discrete time steps and nq represents the num-
ber of joints in the chain. For optimizing motion paths, we
denote qt to represent a set of joint angles on the kinematic
chain at time step t .

Typically, the goal of motion planning is specified in
task space, for instance the specifying final end effector
transform. We introduce the variable x ∈ R

nx to define a
task space coordinate, with nx < nq . As shown in Eq. (1), we
define the first cost in the motion-planning optimization as
the length of the path in task space, where smaller length
paths are desired,

Llength(x2:nt ) =
nt∑

t=1

‖xt − xt−1‖2. (1)

Since we are generating a motion path in joint space,
we must relate task space coordinates qt to joint space
coordinates via a Jacobian matrix, Jq, such that Jqq̇ = ẋ.
With uniformly spaced time steps, �t , ẋt = xt − xt−1 and
q̇t = qt − qt−1 up to a constant scaling factor. The joint space
reformulation is shown in Eq. (2),

Llength(q2:nt ) =
nt∑

t=1

∥∥Jq(qt − qt−1)
∥∥2

. (2)

Due to dynamic considerations of humanoids, jerky
kinematic motions lead to disturbances that make the robot

Table I. Motion configuration preferences.

Similar Configuration
∑

t ||Nq (qt − q̃)||2
Tucked Arm

∑
t ||Nqq(2)

t ||2
Range of Motion Use

∑
t ||Nq (qt − q(m))||2

unstable. To avoid these jerky kinematic motions, we add a
penalty for large accelerations in joint motion, shown in Eq.
(3), where q̈t ∝ 2qt − qt−1 − qt+1 in discrete time,

Lacceleration(q1:nt ) =
nt −1∑
t=2

∣∣∣∣2qt − qt−1 − qt+1
∣∣∣∣2

. (3)

4.1.2. Human Preference Cost Functions

In typical motion-planning problems, additional costs are
included to represent obstacle avoidance, self-collision,
and other concerns. While object models can be used
(Kohlbrecher et al., 2015), their path optimization costs in-
crease complexity and incur computation penalties. Instead,
we allow a human operator to use task-specific knowledge
to inform simpler cost functions for joint configurations
that do not affect the task space motion. The preferences
are mathematically represented as simple convex functions,
with easy to understand textual concepts for the operator.
We must project them into the null space of the task Jaco-
bian, Nq = I − J †J , to negate the effects on the task space,
where J † is the pseudo inverse of the rank-deficient task
Jacobian.

As an example, in the DRC, the human preferences
utilized l2 norms, shown in Table I. The ith joint in the
configuration is denoted q(i), the middle of the range of
motion is denoted q(m), and q̃ represents an “encouraged”
configuration.

We are motivated to use these preference metrics based
on real-world tests preparing for the Finals. In the door task,
shown in Figure 14(a), we needed to keep the arm tucked
away from the wall while still pushing the handle forward.
In the drill task, the wrist motors can rapidly accumulate
heat while holding the drill and eventually hit a thermal
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Figure 14. Two particular cases required human preferences for arm planning. (a) Tucked arm stances are required for obstacle
laden situations, and (b) poor arm configurations can lead to thermal shutdown of actuators when holding heavy objects.

Figure 15. Above, the THOR-RD robot plans a path with the elbow protruding out with high manipulability in the middle of the
joint range. Below, the robot plans a path with the elbow tucked in for maneuvering in tight spaces. The target transform for both
paths is the same.

shutdown, shown in Figure 14(b), so we encourage config-
urations with the wrist motor axis aligned with the gravity
vector. Figure 15 and 16 also show different arm trajectories
according to the task specific human preferences.

4.1.3. Anytime Refinement

As Jq depends nonlinearly on q, the optimization problem
incorporating the previously described cost functions will
not result in an efficient convex cost-function formulation.
To mitigate this concern, we limit the values of qt with re-
spect to an initial, nonoptimal trajectory q̂1:nt . With the con-
straint in Eq. (4), we can formulate a convex optimization by

approximating Jq as unchanging from the initial trajectory,
thereby implementing a form of trust regions (Schulman
et al., 2013),

||qt − q̂t ||2 ≤ ε. (4)

Using sequential convex optimization, we iterate the
optimization many times, with the optimal solution set as
the initial trajectory for the iteration, q̂1:nt ← q∗1:nt

. In this
way, we can continue refining the optimal trajectory until
there is little change in the optimal cost. However, if we are
content with even the initial plan, this iterative method can
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Figure 16. Two different arm preferences were utilized for the door (tight arm) and valve tasks (high range of motion) at the DRC
Finals competition.

be thought of as an anytime planner, where the optimization
is run until a time boundary is hit. During the DRC Finals,
however, we found that the initial trajectory sent to the
optimization program was refined enough to use in most
cases.

4.2. Trajectory Generation

The calculation of the initial trajectory, q̂1:nt , will have a
profound impact on the optimization solution time due
to the sequential linearization. To form this trajectory, we
use a Jacobian control law to drive the joint space motion,
shown in Eq. (7). Filtering of the Jacobian controller includes
clamps when out of the range of joint position and velocity
limits,

J † = (λI + J T J )−1J T , (5)

N = I − J †J, (6)

qt+1 ← qt + J †(xf − xt ) + α · N (qt − qf ). (7)

We use a modified Jacobian pseudo inverse based on
the selectively damped least-squares method (Buss & Kim,
2005) in order to avoid joint limits during motion (Na, Yang,
& Jia, 2008). The pseudo inverse shown in Eq. (5), J †, yields
a null space, N , that is full rank. This full rank null space will
affect motion in the task space, but the degree of its effect can
be tuned by α. Since N is positive-semidefinite, we can run
a linear filter in time such that Nt+1 ← βNt + (1 − β)Nt+1.

The controller update is run until the current task space
pose is within δ, the final task space pose distance (metric
M), or the trajectory exceeds a maximum number of time
steps, tmax, shown in Eqs. (8) and (9).

||xf − xt ||M ≤ δ, (8)

t ≤ tmax. (9)

The task space goal is specified as xf and the initial joint
configuration at t = 0 specified as q0. These specifications

require no computation, but xt requires forward kinematics
computation at every time step, and qf requires a one-time
inverse kinematics solution.

4.2.1. Inverse Kinematics Optimization

The kinematic chain with redundant DOFs yields free pa-
rameters in the computation of the inverse kinematics for
any task space goal, and thus the mapping from f (xf ) → qf

is not unique. To solve for the redundancy, we sample
over the free parameters in order to optimize the same
human preference costs, exemplified in Table I, of the
path optimization. We constrain our path optimization so
that the optimized path will respect this optimal inverse
kinematics solution, qf = q̂f , and the unchangeable initial
configuration, q1 = q̂1. The path is not defined, then, by a
sequence of transforms, as used in other teleoperation sys-
tems (Zucker et al., 2015).

4.2.2. Joint Interpolation

If the trajectory exceeds tmax before approaching the task
space pose within δ, then a secondary controller must drive
qtmax to qf . In this case, we use a simple joint interpolation
procedure to linearly drive the joint configuration to qf ,
shown in Eq. (10), with the stop condition in Eq. (11),

qt+1 ← qt + �q, (10)

�q ≥ qf − qt . (11)

The trajectory generated from thejoint interpolation
method will cause much higher costs in the task space length
than the Jacobian controller. If the Jacobian controller is used
exclusively, then the trajectory is very close to the shortest
path in task space after the initial configuration. Thus, only
the null space motion would need optimization; however,
there is a tradeoff in task space length and null space motion
for meeting human preference.
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Figure 17. The structure of the locomotion and balancing controller provide a hierarchy where the surface inclination informs the
high-level step controller and the low-level joint angle generator.

5. LOCOMOTION AND BALANCE CONTROL

For humanoid robots, moving quickly and reliably in un-
structured environments remains a challenging problem.
The DRC Finals in particular require more agility, sta-
bility, and versatility from the robot than even the DRC
Trials. The robot must progress through the test environ-
ment and complete a number of tasks sequentially. Un-
like the DRC Trials, where each task has a separate time
limit with nearby starting positions, the Finals dictate a
short, hour-long time limit with restart positioning only
for special cases. The lack of safety measures—no belay—
means that a single fall may catastrophically ruin the whole
trial. Finally, the robot should be able to traverse uneven
terrain without precise prior mapping and using limited
remote control. In this section, we describe how we de-
signed our locomotion and balance controller to fulfill those
requirements.

5.1. Walk Controller Structure

Our locomotion and balancing controller consists of a step
controller, a trajectory controller, a joint angle generator, and
a balancing controller, as shown in Figure 17. The step con-
troller receives a control input and generates the next step

position with the corresponding ZMP trajectory. There are
three control modes: the direct mode, which controls the lo-
comotion by specifying the target velocity; the target mode,
which autonomously generates optimal step positions from
the current perceived robot pose to reach the given target
pose; and the special mode, which is controlled by speci-
fying the landing position for the next step. The trajectory
controller generates the foot and torso trajectory, which uses
a hybrid locomotion controller (Yi, Hong, & Lee, 2013) to
switch dynamically between a standard ZMP preview con-
troller that uses linear quadratic optimization and a reactive
ZMP-based controller that uses a closed-form solution of the
linear inverted pendulum equation.

The main benefit of this approach is that it provides
both latency-free control of the next step position and a
generalized step motion that is required for more challeng-
ing terrains. Utilizing these two controllers, our locomotion
and balancing controller reacted quickly to unknown ter-
rain patches.

The joint angle generator calculates the desired joint
angles of the robot, tilting the feet around the toe or heel
for improved performance, and finally the balancing con-
troller stabilizes the robot using a number of stabilizing
strategies.
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Figure 18. The THOR-RD robot can climb the staircase in simulation. The toe and heel lift controller was necessary to maximize
the usability of the leg kinematics.

5.2. Walk Posture

As the THOR-RD platform has fairly short leg dimensions,
it is not feasible to climb high steps using a quasistationary
walk due to knee and shin strike problems. For the DRC
Trials, we used a shortened foot with fast dynamic stepping
for the rough terrain task. However, reducing the foot size
negatively affected the overall stability of the robot. Fast
dynamic stepping requires precise knowledge of the surface
geometry and well-calibrated joint actuators; this approach
does not work well in uncontrolled environments.

A solution for the knee and shin strike problem that
occurs when climbing up steep staircases is to use a bird-
like walk posture where the knee bends in the opposite
direction. Additionally, with the knee behind the robot, bet-
ter surface perception is afforded since the knee is no longer
blocking the view of the head camera or chest lidar. On the
other hand, this posture will lead to shin and knee strike
problems when climbing down steps, which can happen at
the later stage of the uneven terrain. We have found that
this is not a major problem, as we can find a foot step plan
that is clear of shin strike for most cases, with help of the
heel and toe lift control.

Like most humanoid robots, the THOR-RD platform
has an asymmetric knee design that can only bend to one
direction, so the whole leg must face backward to use the
birdlike walk posture. With THOR-RD’s waist yaw joint, we
rotate the upper body a full 180◦; the robot can change the
walk posture actively during the run. Initially, we planned
to change the posture only for the terrain traversal tasks, but
we decided to use the posture for all tasks since the bird-
like knee posture provides counterbalancing advantages for
manipulation tasks, and using a single posture simplifies
turning the walk parameters.

5.3. Heel and Toe Tilt Controller

Fast dynamic stepping was used in the DRC Trials with
the THOR-OP platform since its knee torque is too little for

slow, quasistationary stepping. The new THOR-RD plat-
form has higher structural rigidity and joint torques to reli-
ably perform quasistationary walking. It still has limited leg
dimension compared to the step heights it must climb. To
overcome this kinematic constraint, we utilize an automatic
tilting of the foot around the toe or heel edges to stay in the
stable double support phase longer. Also, the birdlike walk
posture tends to cause the robot to land on its toes due to
knee flex, and this makes the robot unstable while walking
fast forward. We use the heel and toe tilt controller to ensure
that the robot strikes the ground with its heel first. Figure 18
shows the THOR-RD robot climbing the staircase utilizing
heel and toe tilt motions.

5.3.1. Trajectory Calculation

To support the heel-strike, toe-off walking gait on flat sur-
faces, we extend our piecewise linear ZMP trajectory (Yi
et al., 2013) so that the ZMP moves linearly from heel to
toe in a single support. For slow walking over uneven
terrain, instead of moving the ZMP position, we fix the
ZMP position to the center of the current support polygon
to maximize stability. Once the reference ZMP and foot tra-
jectories are generated, we use our hybrid walk controller
to generate the torso trajectory, which uses both a ZMP pre-
view controller and an analytic ZMP controller.

5.3.2. Automatic Toe and Heel Lift Angle Calculation

Toe or heel lift is needed when the leg length is not long
enough for the reference torso and foot poses. We denote
the projected ankle position over the landing surface by xF ,
and the surface roll and pitch angles as φs and θs , as shown
in Figure 19. The target transform on a surface with zero tilt
angle is then

T rF = T (xF )Ry(θs)Rx(φs), (12)

where T is the translation matrix, and Rx and Ry are rotation
matrices around the axes x and y. With the ankle height,
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Figure 19. The toe and heel tilt were used to adapt to the
inclined surface of the DRC Finals. (a) Heel lift. (b) Toe lift.

hankle, the position of the ankle is

xankle = T rF T ([0, 0, hankle])[0, 0, 0, 1]T . (13)

We have the following kinematic constraint:

‖xankle − xhip‖ ≤ Legmax. (14)

In case Eq. (14) does not hold, we can lift the heel by
θheel around the toe contact position to increase the effective
length of the leg. The leads to the new ankle transform,

T rankleH = T rF T ([FT , 0, 0])Ry(θheel)T ([−FT , 0, hankle]),

(15)

where FT is the distance between the projected ankle axis
to the toe contact position. Likewise, we can lift the toe by
θtoe around the heel contact position, resulting in the ankle
transform

T rankleT = T rF T ([−FH , 0, 0])Ry(−θtoe)T ([FH , 0, hankle]).

(16)

We can solve the following equations to calculate the
minimum toe and heel lift angles that satisfy the kinematic
constraints:

‖T rankleT [0, 0, 0, 1]T − xhip‖ = Legmax, (17)

‖T rankleH [0, 0, 0, 1]T − xhip‖ = Legmax, (18)

which have a simple closed-form solution with zero surface
inclination angles. For the general case, we use a newton
solver to find solutions numerically. We use the conver-
gence threshold of 0.5◦, which causes the newton solver to

terminate in fewer than 10 iterations for all the cases we
have tested.

Once the lift angles are found, the type and amount of
lift angle are determined based on the foot configuration
and the range of motion of the ankle joint. In addition, the
minimum lift angle can be manually specified even if the
lift is not needed to generate the toe-off, heel-strike walk
motion.

5.3.3. Joint Angle Calculation

Once the foot tilt angle is determined, we use inverse kine-
matics to generate the leg joint angles. The THOR-RD robot
we use has three hip joints intersecting at a point and zero
knee offsets, so the following relation holds:

T rankle = T rhipRz(q0)Rx(q1)Ry(q2)

×T ([0, 0, −dULEG])Ry(q3) (19)

×T ([0, 0, −dLLEG])Ry(q4)Rx(q5),

where dULEG and dLLEG are upper and lower leg link lengths,
and qi are joint angles. We can first calculate the knee angle
q3 by rearranging Eq. (19),

T r−1
hipT rankle = Rz(q0)Rx(q1)Ry(q2)

×T ([0, 0, −dULEG])Ry(q3) (20)

×T ([0, 0, −dLLEG])Ry(q4)Rx(q5).

If we denote T rLEG ≡ T r−1
hipT rankle, then

||T rLEG[0, 0, 0, 1]T ||2 = d2
ULEG + d2

LLEG (21)

−2dULEGdLLEG cos(q3),

q3 = arccos
(

d2
ULEG + d2

LLEG − ||T rLEG[0, 0, 0, 1]T ||2
2dULEGdLLEG

)
,

(22)

and we can calculate the ankle angles q4 and q5 by rearrang-

ing Eq. (19) as

T r−1
LEG = Rx(−q5)Ry(−q4)T ([0, 0, dLLEG])

×Ry(−q3)T ([0, 0, dULEG]) (23)

×Ry(−q2)Rx(−q1)Rz(−q0).

If we denote the following:

T rILEG ≡ T r−1
LEG (24)

M ≡ T ([0, 0, dLLEG])Ry(−q3)T ([0, 0, dULEG]), (25)

then we have the following relationship:

T rILEG[0, 0, 0, 1]T = Rx(−q5)Ry(−q4)M[0, 0, 0, 1]T , (26)
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which will lead to the following equations:

T rILEG{0, 3} = M{0, 3} cos(q4) − M{2, 3} sin(q4), (27)

T rILEG{1, 3} = M{0, 3} sin(q4) sin(q5)

+M{1, 3} cos(q5) (28)

+M{2, 3} cos(q4) sin(q5),

which can be rewritten as a second-order equation of sin(q4)
and sin(q5) and solved in a closed form. Finally, we rear-
range Eq. (19) as

Rz(q0)Rx(q1)Ry(q2) = T rLEGRx(−q5)Ry(−q4)M. (29)

If we denote H ≡ T rLEGRx(−q5)Ry(−q4)M , we can obtain

q0 = atan2(−t{0, 1}, t{1, 1}), (30)

q1 = arcsin(−t{2, 1}), (31)

q2 = atan2(−t{2, 0}, t{2, 2}). (32)

5.4. Balancing Controller

Unlike the linear inverted pendulum model (LIPM) we use
for dynamics calculation, the physical robot has distributed
mass, which can seriously affect the stability of the robot
if not correctly accounted for. The robot has to withstand
external perturbation from various sources, which includes
uneven terrain, contact with the environment, reaction force
from manipulating an object, joint position error, and struc-
tural flex. In particular, the competition environment at the
DRC Finals was built upon a surface with a global incli-
nation severe enough to make many humanoid robots fall
down. In the following subsections, we describe our ap-
proach to stabilize the robot.

5.4.1. Full-body Balancing

When humanoid robots are used for manipulation tasks,
the difference arm configuration affects the overall center-
of-mass location, and the robot must compensate for it to
keep balanced. For the DRC Trials, we calculated the upper-
body COM location based on current arm configuration,
and we shifted the torso position so that the upper-body
COM remained fixed. Leg masses are not considered, as we
assume that all manipulation takes place when the robot
is standing still with the preset leg stance. As the THOR-
OP robot has a fairly heavy torso and lightweight legs, this
approach has worked well in practice.

However, the new THOR-RD robot has quite a
different mass distribution compared to the THOR-OP
robot. Leg masses have increased significantly due to the
increased actuator capacities and repositioning of the batter-
ies, and the torso and hip have become significantly lighter.

Figure 20. The whole-body balancing controller modulates
the horizontal torso position to stay balanced.

Thus, now we use a fine-grained mass model to calculate
the COM location of the whole robot, and iteratively up-
date the torso position to compensate for the COM error.
The balancing controller is now always active, using the
reference COM position from the walk controller instead of
the middle point of two foot positions as the target COM
position. As a result, the robot can now correctly balance in
the slow single support phase while performing arm mo-
tions. Figure 20 shows how the robot shifts torso position to
remain balanced. We validated the full-body balancing con-
troller using the THOR-RD robot with onboard force torque
sensors, and we found that the measured COM error is less
than a centimeter in the worst case.

5.4.2. Global Surface Adaptation

Most bipedal locomotion controllers assume a flat surface
to walk on, and any unevenness of the surface can seriously
hamper the stability of the walking robot. Unfortunately, the
testing environment for the DRC Finals had a fair amount of
global inclination, and we found that the amount of lateral
inclination can induce landing timing errors, leading to a
fall in the worst case.

We use a simple approach to handle this problem. We
assume that the surface has a uniform global inclination,
and we generate the walk motion based on it. As the actual
surface gradient is not uniform, we use IMU feedback to
adapt to a new surface gradient when the robot is not mov-
ing. To prevent the robot from walking into a region with
a very different surface inclination, we limit the maximum
amount of distance the robot can move at a time. Although
simple, this approach has worked well in practice and
has negligible time loss as the low communication band-
width allowed the robot enough time to adapt to the new
surface.
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Figure 21. The THOR-RD robot performs its getup motion from a prone position. This behavior works reliably when the robot is
facing down, and research into getting up from other postures is underway.

5.4.3. Push Recovery Controller

In the uncontrolled environment, the robot will confront
many sources of perturbation that can destabilize the robot,
such as contact with the environment, uneven surfaces, or
joint tracking errors. For the DRC Trials, we used the ankle
strategy, which modulates the ankle joint target position to
counter the perturbation, and the stop strategy, which stops
the robot in the most stable double support stance when the
detected perturbation is large.

For the DRC Finals, we also utilized an adaptive land-
ing timing controller and step strategy to handle lateral
disturbances thanks to the reactiveness of the analytic ZMP
walk controller. We used the IMU and joint encoder mea-
surements to determine whether the following foot landing
is too early or too late, and we adjusted the landing timing
and landing position of the current swing foot. We tested
the push recovery controller extensively, including having
the robot walk over various irregular terrains and kicking
the robot while walking in place.

5.4.4. Self-righting Controller

One of the main differences between the DRC Trials and
the DRC Finals is that robots are deployed without a gantry
system to protect it from falls. A humanoid should have the
ability to get back on its feet after a fall, and this ability was
included for DRC Finals qualification. We made a simple
keyframe-based whole-body motion that can reliably make
the robot stand up from a prone position, shown in Figure
21. However, as a fixed motion only works in limited cir-
cumstances, a more general approach is required to handle
different fallen body configurations and surface geometries.

We have developed a machine-learning-based algo-
rithm to generate self-righting motions from different body
configurations (Jeong & Lee, 2016). The approach is vali-

dated with experiments using a scaled-down DARwIn-OP
humanoid robot. One big challenge in applying machine-
learning methods to humanoid robotics is the high-
dimensional and continuous state and action spaces. To
solve this problem, we discretized the state space, in-
cluding all joints and body attitude information, using
an expectation-maximization algorithm to cluster various
poses.

To learn a path in the state state, we applied a Q-
learning algorithm to repeated trials in a simulated envi-
ronment. This approach effectively generated self-righting
motions from a wide range of fallen body configurations,
and even performed better than previous keyframe-based
motions. The algorithm can be generalized to other hu-
manoid robots, by means of using robot-specific kinematic
subroutines. Unfortunately, we did not attempt this behav-
ior in the competition due to concerns about damage after a
fall. Self-righting attempts with damaged hardware can be
futile and further damage the robot. In the future, we would
like to provide the means to identify structural damage.

6. RESULTS

While the THOR-RD system was being completed, we
tested on the THOR-OP platform from the Trials with mod-
ified arms and prototype grippers. End effectors and arm
lengths were validated in simulation as well. Our testing
included the Maxwell Pro network shaper, which helped to
validate our network usage strategy.

We skipped the Egress task because the risk of a fall
was high, which would compromise an entire run. Before
attempting on the physical robot, all the other tasks were
completed in a simulated environment when tried sepa-
rately. With the physical robot, we did not test the Rough
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Terrain or Debris tasks, and we eventually decided to by-
pass that section.

At the DRC Finals competition, Team THOR completed
the Driving, Door, and Valve tasks for both runs. We used
the same test field for both days, but unfortunately the se-
vere surface irregularities on that field from patched asphalt
caused the robot to fall down between the Valve and Drill
tasks for both runs. On the first day we scored three points
in 48 min, which includes the 10 min penalty for manual
egress. On the second day, we scored the third point in a
much quicker 28 min, including the penalty.

6.1. Driving

We use a periodic stop-and-go approach that was success-
fully followed in the DRC Trials to drive the Polaris vehicle.
Although this method is slower than continuous driving
with a dynamic model of the vehicle, it works fine with min-
imal prior testing. Steering is accomplished using the wrist
yaw actuator that lies coaxially with the steering wheel col-
umn. Frontal movement is controlled by a timed pedalling
motion, where the engine braking stops the vehicle when
the pedal is released.

Testing before the competition revealed that the diffi-
cult part of the driving task is not the driving itself but set-
ting up the robot in the seat and taking the robot out of the
car reliably. There was no difficulty setting up the THOR-OP
robot for driving during the Trials. However, with THOR-
RD, we found that the slimmed down torso and shorter
reach of the steering arm requires more precise position-
ing of the robot. Furthermore, the birdlike walk posture for
locomotion complicates fitting the robot inside the cockpit
due to the limited range of the knee joint.

To solve these problems, we placed the robot facing
backward in the seat and used one arm to support the up-
per body. When the mounting of the robot is completed, the
head rotates 180◦ to provide a frontal video feed while driv-
ing. We successfully completed the task for both runs, where
the second run was completed significantly faster than the
first one. Figure 22 shows the THOR-RD robot driving the
Polaris vehicle during the competition.

6.2. Egress

During the early stages of development, we brainstormed
possible ways to complete the egress task with the THOR-
RD platform. One method included putting the robot side-
ways in the cockpit with both feet in the air. A cable system
would control the gas pedal using the gripper hand. How-
ever, we decided to skip the Egress task because we were not
sure of the reliability of our position-controlled actuators in
multiple contact situations where the thermal shutdown of
any actuator would ruin an entire run. Instead, we designed
a motion sequence that partially turns off actuators to help
field operators take out the robot.

Figure 22. THOR-RD drives the vehicle with its head rotated
180◦. Due to the default birdwalk knee configuration, the robot
is mounted backward in the car.

6.3. Door

In the Trials, we found the Door task to be one of the harder
manipulation tasks, as the planning of a long pull motion
was not trivial. The door kept closing due to strong winds.
Walking while pressing the loaded door made the locomo-
tion unstable and inconsistent. For these reasons, we chose
to approach the door sideways and cross the door frame
by sidestepping. In this way, there is more margin for error,
and the robot is more robust to lateral perturbations than
frontal ones.

The DRC Finals Door task has been largely simplified,
presenting one push type door that swings open fully once
the latch is unlocked. However, as the robot has to complete
all tasks in sequence, speeding up the task becomes a high
priority. For these reasons, we decided to pass the doorway
by walking forward, which is much faster than sidestepping
but has a high chance of collision.

We found that to open a push type door while fac-
ing the door, the robot should align closer to the door in
order to push the door ajar far enough. We employed the
preference-based arm motion planner to generate the arm
ready motion for tight spaces. The door-opening motion
included optional waist rotations to leverage a larger end
effector workspace for windy situations such as the DRC
Trials. Making the robot go straight through the door frame
is not a trivial task and requires good positioning and situ-
ational awareness. We use the head LIDAR to guide the
robot to the center of the nearby door frame, as shown
in Figure 23. The standard walk motion can move the
robot forward without touching the frame. If the robot con-
tacts the door frame, the adaptive landing timing controller
and push recovery controllers help the robot to remain
standing.

On the first trial, we needed almost 6 min to open the
door, as the handle was verified to be broken and would
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Figure 23. The operator guides THOR-RD through the doorway with the help of LIDAR feedback over the low bandwidth
channel.

open the door when turned down but not up. It took an
additional 6 min to cross the threshold, as we poorly posi-
tioned the robot in the door frame, and the robot came in
contact with the frame while walking. However, thanks to
our safeguards, the robot kept walking forward and com-
pleted the task. On the second trial, it took 1.5 min to swing
open the working door, and an additional 1.5 min to pass
the threshold into poor network conditions.

6.4. Valve

For both DRC competitions, we exploit the continuous ro-
tating wrist yaw joint and robust passive hand to complete
the task quickly. The passive hand, which consists of two
parallel rods, proved to be very robust to minor alignment
errors and helped us to receive the best in task award for
Valve at the Trials.

For the DRC Finals, we reduced the length of the pas-
sive hand, as it must operate in other tasks as well. This
reduced the margin of error for positioning the robot. The
approach distance significantly increased due to the sequen-
tial nature of the tasks. Thus, the main focus during prepara-
tion became approaching. We identified good stance offsets
from a variety of valve positions that led to fast times to
engage the valve with the gripper.

However, at the competition, the sloped and unpre-
dictable terrain meant that the walking engine could not be
trusted to make the fine grained steps to the best stance. We
decided to stop walking at much further distances to the op-
timal pose than planned. The preference-based planner, set
to occupy the middle of the joint’s range of motion, found
smooth trajectories in this unexpected arm workspace.

On the first trial, we took 7 min to turn the valve, need-
ing to correct the alignment of the arm after inserting the
chopsticks inside the valve handle. On the second day, we
aligned well on the first attempt and took just under 5 min

to complete the task. Figure 24 shows the robot lining up
its arm to the valve. While engaging and disengaging the
valve was executed with the planner, the valve turning mo-
tion was conducted by direct joint angle control of the wrist
yaw joint, while being observed by the operator using the
low bandwidth channel.

6.5. Drill

Due to the torque limit of wrist actuators, we chose to use
the lighter gun-type drill for both of the DRC competitions.
In the Trials, we used a two-finger gripper with a fixed palm
that requires a precise alignment of the gripper to success-
fully trigger the drill. Although we successfully picked up
and triggered the drill, it took a considerable amount of
time, which is not desirable for the more time-limited DRC
Finals.

We focused on iterating on the gripper design in order
to grab and trigger the drill robustly with some amount of
alignment error. In testing, we used frequent image up-
dates on the low-bandwidth channel to provide low la-
tency situational awareness. The image updates included
the wrist camera feed, so both arms were in motion dur-
ing the task. We fine-tuned the wrist camera using joint
level motions, while the actuated gripper was moved into
place using the preference-based planner. One issue found
from testing is that the wrist roll actuator can reach ther-
mal shutdown with some arm configurations. To mitigate
this situation, we set the planner preference to avoid such
configurations.

We found that on the new gripper with the actuated
thumb finger, grabbing and triggering the drill is consider-
ably easier. We could consistently grab and trigger the drill
through remote operation. After fine-tuning the pregrasp
pose of the gripper, we command the gripper fingers indi-
vidually using current control. Before and after command-
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Figure 24. The high and low bandwidth view during the DRC Finals Valve task: The robust passive hand allows for quick
alignment, and the low-resolution image feed provides immediate feedback during operation.

ing the fingers, we request volume levels from the robot’s
microphones. This provided a reliable way to ascertain the
trigger state, as an activated drill saturated the microphone.
Shown in Figure 11 are side-by-side color and gray-scale
images that provided cues for depth perception and trigger
alignment.

Unfortunately, we did not progress to the Drill task
during the actual competition, as the robot fell down in both
runs after stepping on the surface irregularities in front of
the Drill task setup, shown in Figure 30.

6.6. Surprise

The surprise task was chosen randomly for each day of the
Finals from a number of manipulation tasks. The potential
set of tasks was revealed in advance of the competition.

We first set up simulated models of those tasks to check
feasibility within the workspace of the THOR-RD robot. We
then set up mockups of the task targets to test with the phys-
ical robot. We found that the tasks are achievable, but they
require good depth perception and fast feedback. We use
the secondary camera feed sent through the low-bandwidth
channel to provide fast depth feedback. We found that the
plug task requires a larger workspace than arm movement
alone provides. At first, we let the robot sidestep while
holding the plug, as shown in Figure 25. Later we utilize
waist rotation to obviate the need to walk with the plug in
hand.

During the Finals, the overhead lever pull and the plug
moving were chosen as the surprise tasks for trial runs 1 and
2, respectively. The pull lever task was practiced in simu-
lation and lightweight mockup only, but the plug moving
task was practiced with a closely replicated setup, and we
could consistently complete the task. Unfortunately, we did
not have the chance to try the surprise task due to the fall
for both the runs.

6.7. Rough Terrain and Debris

According to the DRC Finals rules, teams may choose either
the Rough Terrain or Debris tasks to complete, and they

can attain the same single point for either task. Although
the details of the Rough Terrain task had been fairly well
known before competition, it was not clear how the Debris
task would be set up. Due to this uncertainty, we decided
to try the Rough Terrain task.

To handle the rough terrain, we devised the extended
locomotion controller using heel and toe lift. We set up the
terrain in a simulated environment, shown in Figure 26, in
order to test the ability of THOR-RD’s range of motion and
torque specifications. We found that the simulated robot can
walk over the given terrain with a noisy surface model, and
it does not have kinematic or joint torque issues. Without
having extensively used the real THOR-RD robot on the
terrain, we decided to skip both tasks and head to the well-
tested Stairs task.

6.8. Stairs

We set up a mock staircase and tested walking up and down
it with the robot, shown in Figure 27. To test the robustness
of the climbing motion against the perception error, we set
up each step height differently—the step heights are set
to 23, 25, and 22 cm, respectively—as well as starting the
robot in different initial positions. The robot could climb
up and down the stairs with a high success rate in spite
of incorrect surface models, thanks to the extended double
support phase that uses heel and toe tilt with quasistatic
stepping motions. Unfortunately, we did not progress to
the Stair task due to the fall for both tasks.

6.9. Network Usage

Finally, to gauge robot autonomy and human interaction,
we consider usage of the network channels. The upstream
data capture the amount of information the human operator
had to communicate to the robot. For the outdoor network
conditions, we used 34 commands with 2,366 bytes to in-
struct the robot on how to open and go through the door.
Inside, we used 59 commands with 3,344 bytes to approach
and turn the valve and walk away. We omitted the driving
task usage, as it was a very low-dimensional task, with an-
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Figure 25. The robot pulls the plug out of the socket and mounts it in the other socket during the DRC Testbed.

Figure 26. The THOR-RD robot traverses over the DRC Finals uneven terrain in a simulated environment.

gular changes in the wrist and head, and binary changes
in the throttle; it was a very teleoperated activity with full
availability of the high-bandwidth channel.

Shown in Figure 28 is the cumulative network usage
over time for commanding the robot after the driving task.
More important than the cumulative usage is the frequency
of commands sent to the robot indoors. Long pauses in
commands could indicate that too much time is taken by
the operator to understand the scene. Figure 29 shows our
intervals between successive commands.

The downstream data show how much information
the human was able to process during an overall trial.
Table II summarizes our network usage of downstream
perception; the four perception items at the top were subject
to network dropouts, while the bottom three utilized the
low-bandwidth channel that had no dropouts. The num-
ber of bytes utilized will be different between runs because
fewer packets are dropped later in the run. As we needed
less time for our second run, we used less information to
achieve the same number of points.
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Figure 27. The THOR-RD robot climbing a set of stairs using the toe and heel lift controller.

7. LESSONS LEARNED

The DARPA Robotics Challenge allots a limited time frame
for research teams to implement reliable systems that are
robust to outdoor environments. To perform well, we man-
aged our resources with priorities on rapid iterations and
repeated system testing. In this section, we provide specific
strategies that helped our overall effort, and we present
our thoughts on improvements for research and develop-
ment. Above all, we credit a supportive team that continu-
ally worked under pressure and across time zones to finish
the DRC Finals.

7.1. Hardware Iterations

While major software changes can be implemented in short
periods of time, hardware modifications require days to see
even minor updates. We found that simultaneously fab-
ricating design iterations on grippers and feet provided
a time-efficient way to maximize our hardware setup. Si-
multaneous manufacturing meant trying several different
fingers and proactively making new designs before test-
ing on the real robot finished from previous designs. While
newly fabricated hardware was not always tested thor-
oughly, this library of parts was invaluable. By the week
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Figure 28. Operator command rates slowed down upon tran-
sitioning from the outdoor network conditions to indoor con-
ditions.
Table II. Network usage (kilobytes) for Trials 1 and 2 indicate
how much information was provided to the human.

Outdoor Indoor Outdoor Indoor

High bandwidth

ChestMesh 237,714 802,240 52,251 73,537
HeadMesh 45,062 396,985 3,082 32,921
HeadCam 152,104 102,995 34,464 8,172
HandCam 19,667 21,585 5,948 1,461

Low bandwidth

Feedback 363 294 77 214
HeadCam 0 1,071 0 629
HandCam 0 42 0 15

of the Finals, we had many different finger and arm combi-
nations at our disposal in case we found one setup more
suitable to the task configuration. Similarly, many foot
choices were available, and we feel that this mix and match
approach mimics real-world disaster response needs.

7.2. Network Testing

The Maxwell network emulator was able to drop packets to
simulate real network blackouts; however, the implementa-
tion of the device differed somewhat from the rules descrip-
tion. UDP Packets larger than the MTU size of 1,500 were
actually discarded, instead of packets larger than the 64k
UDP packet size limit. Due to transmission fragmentation
to 1,500 byte levels, a 64k packet was not allowed to pass
by the network emulator. This important distinction meant

that the network shakedown at the DRC Testbed in South
Carolina became one of the most crucial aspects of our de-
velopment. While we were able to code a packet reconstruc-
tion routine and send 1,500 byte fragments of 64k messages
in South Carolina, purchasing the Maxwell Pro became a re-
quirement. Testing with the emulator additionally allowed
us to maximize the usage of the low-bandwidth channel in
order to send image frames every 2 s. Over many tests with
the robot, we calibrated the best JPEG quality settings, res-
olution, color space, and frame rate for both the head and
wrist cameras. In a real disaster, the ability to calibrate these
settings may be crucial.

7.3. Backup Robot

We focused significant energy on having two robots fully
working at any given time—a luxury few teams enjoyed. We
could test two different portions of software on a robot at
the same time, which effectively doubled our development
rate. Additionally, it eliminates downtime from hardware
repair or reconfiguration.

Although we did not have two identical robots from the
beginning, the fully modular nature of the robot allows for
incremental upgrades—mixing and matching of different
robot components was no hindrance to progress. We built
two “Frankenstein” versions of the robot from one THOR-
OP and one THOR-RD robot: one with powerful THOR-RD
legs and the old THOR-OP upper body for locomotion test-
ing, and one with the old THOR-OP legs and a new THOR-
RD upper body for perception and manipulation testing.
This mixture of parts required a very flexible configuration
system in which kinematic changes, IMU device protocols,
camera settings, etc. could be modified fluidly. We had an-
other set of THOR-RD upper-body structural parts that we
used to test add-on power and electronic components prior
to putting them on the robot.

By the time of the Finals, we had two nearly identical
robots fully assembled and tested. This proved very useful
after our fall in the first trial. We swapped an entire leg very
quickly, without needing to replace motors one at a time.

7.4. Calibration and Sensor-based Planning

With the availability of regular low-bandwidth sensory
feedback, we did not prepare a rigorous calibration between
the arm and leg joints of the robot and the mounted sensors.
Paired with the multiple angle camera feeds, we found that a
quick calibration of the LIDAR sensor is more than enough
for most manipulation tasks, and we prefer to have extra
confidence from visual feedback before executing motions.

Still, we spent considerable time on each manipulation
task. A semiautonomous approach with well-calibrated sen-
sory feedback could allow much faster operation in general,
albeit with more risks. Similarly, we feel that Force-Torque
sensor feedback added to our stepping strategy would pro-
vide much better modeling of the stairs and rough terrain,
where touchdown information would inform LIDAR-only
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Figure 29. The indoor command rate spread out significantly as the latency between high-resolution information sent from the
robot was increased from the outdoor network settings.

Figure 30. (a) The THOR-RD robot fell down after stepping on the surface irregularities. (b) The closeup of the surface shows
irregularities due to patching of the asphalt.

models. In the future, calibration and sensor-based planning
should become a high priority.

7.5. Environment Foreknowledge

The DRC testbed provided a very representative environ-
ment of the DRC Finals, and details about most tasks were
very well known in advance. Teams were able to undergo
extensive testing with replicas of the competition environ-
ment. This knowledge acts as a double-edged sword for the
perceived outcomes of the DRC Finals. While the results
of the winning teams were impressive, questions still re-

main about arbitrary environmental objects. However, with
the observed spread in completion of manipulation tasks, it
seems that giving a priori knowledge was prudent.

The most surprising part of the DRC Finals competi-
tion was the terrain. Just days before the event, the DRC
officials revealed that the testing environment included a
global downward slope of approximately 3.5% toward the
task wall. The actual surface also had severe local irreg-
ularities, as shown in Figure 30. Negotiating this terrain,
and adapting very quickly, is a true hallmark of disaster
response, even if this unexpected environment did cause
many robots, including ours, to fall.
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We are excited about our accomplishments in motion
planning, adaptive autonomy, and robust systems design.
However, there is still some concern about how much de-
sign catered exclusively to the DRC and how relevant our
methods will be in a real disaster where next to nothing is
known about the environment.

8. CONCLUSIONS

The demanding DARPA Robotics Challenge Finals estab-
lished a proving ground for the latest research into disaster
response robotics. The competition pushed teams to focus
on autonomous systems that cooperate with human oper-
ators, while overcoming unpredictable outdoor conditions
that represent the real world. We presented Team THOR’s
particular approach to the challenge, which includes effec-
tive network usage strategies, planning routines that incor-
porate high-level human objectives, and modular hardware
to traverse the terrain via bipedal locomotion.

In the DRC Trials, we showed that lightweight modular
humanoid robots are ready to tackle the disaster response
challenge. For the DRC Finals, we improved our hardware’s
reliability and functionality, supported extremely low band-
width feedback for the operator interface, implemented
a novel upper-body planner, and accommodated surface
changes with a new locomotion strategy. Team THOR con-
sistently scored three points in the final competition and
reduced the task completion time between its two runs.

This consistency shows a level of robust behavior and
highlights important areas for future research. We success-
fully split behaviors into upper-body and lower-body con-
trol, with little in the way of full-body motions. Intelligent
full-body motions that respond dynamically to the environ-
ment remains a challenge. Having fallen in both of our runs,
we are looking both at better surface adaptation strategies
and hardware that can survive such impacts.

While we have identified such algorithmic and phys-
ical priorities, much of the DRC competition included hu-
man factors. Incorporating close to real-time feedback and
allowing human operators to drive planning systems gave
the operator a better sense of control and confidence in the
robot. Future work for disaster response robotics in un-
known environments will require this sense of confidence
for timely execution.
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