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Abstract— Cameras that provide distance measurement along
with RGB data have increasingly been appearing in the market
as alternatives to the more expensive setup of LIDARs and
webcams. While products such as the Kinect have existed in
the past, its weight and form factor have been demanding
constraints for mobile robots, specifically legged robots that are
sensitive to payload. Recently Intel released a new lineup of Intel
RealSense RGB-D cameras that have favorable characteristics
for legged robots, specifically in terms of resolution, frames per
second, form factor, weight, and price range. However, because
these active stereo sensors are noisy for reasons such as non-
overlapping image regions or lack of texture, it is beneficial
to empirically model the noise. Systematic errors, specifically
the distance inhomogeneity and depth bias, are observed to
recognize and verify the limitations of the camera. We also
analyze the non-systematic error by modeling both the axial
and lateral noise as a function of distance and angle of incidence
using a Gaussian distribution for its versatile applicability for
mobile robots in mapping.

I. INTRODUCTION

As mobile robots transition from a laboratory setting to
the outside world, perceiving its surrounding environment
becomes necessary. Autonomous vehicles mostly rely on
LIDARs to sense their surroundings. However, noticeable
downsides are their price range, accuracy in the short range,
and sometimes their form factor. Consequently, although
some mobile robots do make use of LIDARs, the release of
affordable depth cameras such as the Microsoft Kinect and
the Asus Xtion Pro have seen many modern mobile robots
adopt these depth sensors [1]. The price range of some depth
sensors such as RGB-D cameras are typically magnitudes
less than that of the LIDARs, while also providing superior
accuracy in the short range. Additionally for mobile robots,
characteristics such as a camera’s form factor, weight, and
field of view (FOV) are important as for example, although
numerous successful research has been done using the Mi-
crosoft Kinect, its bulky size and weight may be infeasible
for a mobile robot that cannot carry much payload.

In January 2018, Intel released a new line-up of RGB-
D cameras under its RealSense family. Effectively replacing
all previous generations, the Intel RealSense D400 was
announced with two active stereo cameras in its family to
begin with. The D415 has a higher pixel density due to
its higher resolution but lower FOV with a rolling shutter,
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Fig. 1. Legged robots ALPHRED (top left), NABi (top right), and SiLVIA
(bottom right) that use the Intel RealSense D435 for mapping its local
surroundings. An example of ALPHRED’s view is shown in the bottom
left.

making it a sensor suitable for a static environment. On
the other hand, the D435 has a wider FOV with a global
shutter, making it relatively better for capturing a moving
environment. Recently, extensive analysis on the D415 has
been done. One work has tested the D415 in near range
situations (100∼1000 mm) and also compared it with other
sensors designed for close range [2]. Similarly, another
conducted experiments on not only the D415, but also for the
Microsoft Kinect v2, the Orbbec Astra S, and partially for the
D435 [3]. Pixel-wise characterization was done by pointing
the sensors at a white planar target to capture the pixel-
level uncertainty. Sensor-wise characterization was done by
assessing the sensors ability to measure a known geometry.
While these two works do report depth accuracies, for mobile
robots, a more informative model of the noise can be useful
for potential post-processing purposes.

Work has been done in modeling the Microsoft Kinect
v2 for mobile robot navigation purposes [4]. Systematic and
non-systematic errors were assessed, with specific focus on
depth and amplitude errors. The modeling approach follows
the methods taken in [5], where the axial and lateral noise of
the Kinect v2 was measured and a model that is a function of
distance and angle was fitted for both. Both methods propose
using these models to enhance the performance of existing
3D reconstruction strategies.

In a similar fashion, with the Intel RealSense D435,
we attempt to provide metrological characterization of the
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TABLE I
DETAILED COMPARISON BETWEEN DEPTH SENSORS.

Model D435 D415 Kinect v2
Resolution 848x480 1280x720 512x424
Frame Rate 90 90 30
Shutter Type Global Rolling Global
Dimensions (mm) LxWxH 90x25x25 99x23x20 249x66x67
Weight (g) 72 72 970

sensor, as well as its axial and lateral noise models at varying
angles of incidence. The key difference between the Intel
RealSense D435 and the Microsoft Kinect and the Kinect v2
is that aside from the extreme difference in form factor and
weight, the D435 is equipped with a stereo camera while
the Kinects do not. Thus, in scenes where the structured
light technology from the Kinect and the time-of-flight (ToF)
principle used in Kinect v2 falls short from its fragile nature
and susceptibility to interference from sunlight, an active
stereo camera can still manage to compute reasonable depth
values.

Thus, this paper’s primary contribution is in that to the
authors’ best knowledge, no such analysis has been done
for what is a promising sensor for mobile robots such as
those shown in Figure 1. This paper first briefly introduces
the Intel RealSense D435 technology in Section II. Section
III presents the systematic error analysis, while Section
IV explains the noise modeling approach used. Section V
analyzes this captured data and presents an axial and lateral
noise model for the D435. Section VI concludes the paper.

II. REALSENSE D435

The Intel RealSense D435 is an active stereo depth camera
that uses Intel’s custom ASIC, the Intel RealSense Vision
Processor D4, to conduct a custom variant of the Semi Global
Matching algorithm to compute the depth. It also has an
optional infrared (IR) projector that assists in improving the
depth accuracy by projecting a non-visible static IR pattern
when the scene’s texture is low. Additionally, unlike the
Kinect v2, which can get depth at a resolution of 512×424
at up to 30 frames per second (FPS), the D435 can get up
to 848×480 at up to 90 FPS. Its form factor and weight is
also significantly smaller and less. Compared to the D415,
the D435 has a global image shutter which makes it a better
candidate for mobile robots that perceives the environment
as moving. A more detailed comparison between the two
D400 cameras and the Kinect v2 is shown in Table I.

Our data collection setup uses Intel’s official software de-
velopment kit1, which supports wrappers to various different
languages. In our case, Python was used to record the data.

III. ERROR ANALYSIS

Although the Intel RealSense improves on previous tech-
nology by using a stereo matching algorithm assisted with
an IR projector to make the sensor less susceptible to
interference from different lighting conditions, it is still
vulnerable due to a multitude of reasons. Intel claims that

1https://github.com/IntelRealSense/librealsense

Fig. 2. Comparison between empirical and expected RMS depth error as
a function of distance.

its built-in algorithm uses a complex combination of all
the parameters in the “Advanced Mode” to calculate the
depth stream and suggests using one of the pre-defined depth
settings available in the SDK. Nonetheless, we attempted to
modify each parameter extensively, but usually saw minimal
gain in performance. Therefore, this work uses the default
settings after calibrating the cameras using Intel’s Dynamic
Calibration tool and verifying the depth quality using the
depth quality tool provided by the SDK.

In a calibrated state, we analyze and model the system-
atic errors and non-systematic errors respectively. The most
prominent type of error of the former is what is known
as “distance inhomogeneity.” It refers to the potential depth
error at different distances.

To observe this error, the sensor’s front glass is positioned
in parallel with a flat white plane, and distance measurements
to the plane are collected at a known distance. The average
of the distance measurements are then compared with the
ground truth value to compute the error. In fact, with stereo
sensors such as the D435, an expected RMS error e exists,
and can be calculated by:

e =
d2 × s

f × b

f =
0.5× px

tan(Vh

2 )

(1)

where f is the focal length, px is the X resolution in pixels,
Vh is the horizontal field of view, d is the distance in
millimeters, s is the sub-pixel error, and b is the baseline.

After calibrating the camera and checking the depth qual-
ity by confirming its subpixel RMS error, the camera was
positioned from 0.3 m to 2.4 m at 0.1 m intervals away from
a white wall, which is verified using the Bosch GLM35 laser
distance measuring device which has an accuracy of ±1.5
mm. Its disparity shift was set to 0 and the laser power was
set at 150 mW. For fair comparison with the expected RMS
error, the RMS error of the difference between the average of
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Fig. 3. Variance of 100 samples at different distances.

Fig. 4. Distance between each pixel and a fitted plane for a subset of
distances to observe the depth bias.

100 samples and the known distance is computed. Figure 2
shows a comparison between the empirical and the expected
error and the empirical data shows that in reality, more
error can be expected, but not by much from the expected
values. Qualitatively, it can be observed that the error is
bound under 5 mm up to ∼1000 mm, but grows quadratically
afterwards. Interestingly, the variance of the error also grows
quadratically as shown in Figure 3.

Additionally, systematic bias observation is attempted by
fitting a plane to the captured depth values of the white wall
and computing each depth value’s distance to it. Unlike a
systematic circular shaped bias observed towards the center
of the D415 [3], as seen in Figure 4, a clear pattern does not
exist. We suspected averaging the 100 samples as potentially
squashing the behavior and conducted the same calculations
for a single frame, but no clear pattern was observable.

IV. MODELING APPROACH

Beyond the systematic errors, we are interested in cap-
turing the D435’s 3D noise distribution (i.e. non-systematic
error) by measuring its axial and lateral noise, for use in
various applications such as mapping for legged robots.
Because the D435 has two IR imagers for stereo vision,
with the image stream from the left used as reference, the

Fig. 5. No data or “shadowing” region on the left of a raw depth stream
due to a non-overlapping region.

Fig. 6. Actual setup used to gather data at different distances and angles.
A distance measurement device with 1.5 mm accuracy was used to measure
distances and a video tripod precisely rotated the planar target to the desired
angles.

resulting depth data has a section with no data due to a non-
overlapping region, as seen on the left of a raw depth stream
in Figure 5. When the scene is closer, this region is greater,
as opposed to when it is farther away.

We follow an approach traditionally done on the Kinect in
the axial direction [6] [7] which has also been extended for
the lateral direction [5]. Following the common convention
shown in Figure 7, the direction the camera is facing is
designated as the Z axis and the rotating axis is the Y axis.
The sensor was mounted on a tripod with a leveling base,
facing a flat white board mounted on a video tripod that
could rotate about the vertical axis at precise angles, as seen
in Figure 6.

The camera took multiple rectangular samples sufficiently
inside the planar board at different z distances away from
it. Additionally, as the angle the robot is looking at its
surrounding can also increase the depth noise, a noise model
as a function of the angle of incidence was also sought for.
To do this, multiple samples at different evenly spaced θy
were also taken.

In our work, the axial noise is considered to be the pixel-
wise standard deviation of the distance between the depth
value and a plane fitted on the region. Similarly, the lateral
noise is computed as the variation of the pixels about a
line fitted along the left and right vertical edges of the
planar target. Data collection was completely automated bar
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Fig. 7. The flat white target is positioned a known z distance rotated θy
degrees. The coordinates follow the common camera convention.

the manual moving of the camera to different z distances
and rotating the planar target to different θy angles in a
clutter-free room. A series of bilateral filtering, Canny edge
detection, and shape detection methodologically found the
planar target. Following this, vertical edges were found with
the corners of the planar board removed, while a rectangle in
the center of the target and sufficiently away from the edges
to avoid potential corruption from the edge noises was also
found. This data was recorded 100 times per combination of
z distance and θy rotation.

V. NOISE MODELING

Considering the dimensions of mobile robots such as
ALPHRED [8], NABi [9], and SiLVIA [10], a distance range
of 0.4 m to 2.1 m was selected with angles from 0◦ to 75◦

at 15◦ intervals. Note that because of the aforementioned
“shadowing” effect due to the depth image being about the
left IR imager, during rotation from 0◦ to 75◦, shadowing at
the left edge of the planar target noticeably worsens relative
to the right edge. Consequently, two independent lateral noise
analyses are done for the left and right edge.

We are interested in modeling the noise under a Gaussian
distribution for its versatile applicability in a variety of
different algorithms. Observing the axial noise distributions
in Figure 8, it is clear that a Gaussian distribution can be fit
to the data. For verification purposes, an identical analysis
was done on the data obtained from the white wall, which
also showed a Gaussian distribution.

Based on the curves fit about the obtained standard devi-
ations, an approximation of the noise σz , as a function of
distance z and angle θy , is obtained and shown in Figure
9 and 10. Axial noise results in a quadratic behavior as
a function of z. To incorporate the noise model exploding
to infinity towards 90, a hyperbolic term with heuristically
obtained values of 0.022 and z3/2 are included as in previous
works to embed this phenomena.

σz(z, θy) = 0.001063 + 0.0007278z

+ 0.003949z2 + 0.022z3/2
θy

(π/2− θy)2
(2)

Fig. 8. Axial depth measurements for a subset of the distances are shown.
It is clear that the axial noise can be modeled as a Gaussian.

Fig. 9. For selected distances, axial noise as a function of angle is shown.
As the angle approaches 90◦, noise approaches infinity.

Contrary, the lateral noise, possibly due to the limitations
imposed by the shadowing effect, did not exactly have a
normal distribution. Nonetheless, we force a fit to see if a
qualitative trend exists among the different distances over
the angles. However, as seen in Figure 11, no qualitative
behavior is recognizable between the noise values obtained
at different distances. Thus, a conservative 90th percentile
of the sampled lateral noise values are selected for the left
edges (σL) and the right edges (σR).

σL = 0.0432m
σR = 0.0407m

VI. CONCLUSION

The Intel RealSense D435 camera is a promising depth
sensor for mobile robots, unlike LIDARs which are often
magnitudes more expensive for only superior performance
in long range sensing, while the Kinect v2 is considerably
bulky and heavy. The D435’s form factor, weight, and price
range is especially more attractive for legged robots that are
sensitive to additional payload it needs to carry on top of the
bare minimal hardware required for locomotion.

With this in mind, in this paper, we empirically collected
depth data of a flat white wall as well as depth data of a pla-
nar target at every combination of a chosen array of distance
and angles. We were able to verify the quadratic nature of

710

Authorized licensed use limited to: UCLA Library. Downloaded on May 14,2020 at 14:50:06 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 10. The axial noise can be seen as a surface that peaks towards infinity
regardless of the distance value as the angle approaches 90◦. The drawn
surface is cut off at 0.03 to show the quadratic nature at angles less than
90.

Fig. 11. Lateral noise for selected distances are shown for both the left
edge of the planar target, where shadowing exists, and the right edge. No
identifiable behavior exists.

depth error as a function of distance, and also observed that
its variance also grows quadratically. Furthermore, models of
axial noise, as a function of distance z and angle θy , as well
as a conservative constant value for the left and right lateral
noise were found. We believe that this noise model can be
used for mobile robots using the D435 for applications that
assume Gaussian noise. Our team plans to apply this model
in refining our mapping algorithms for our legged platforms.
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