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Abstract—This paper presents a technique to model
statically indeterminate forces based on stiffness matrices
for multi-limbed climbing robots. Current wall climb-
ing robots in literature overlook statically indeterminate
forces, causing an incapability to estimate climbing failure
under certain circumstances. Accounting for these forces,
robot deformation can be approximated, paving the way
for the proposed two-wall climbing approach. During a
wall climb, two failure modes, slide and over-torque, are
identified to compute feasible climbing region. A hexapod
robot is used to verify the proposed technique by climbing
between walls with pure friction end effectors.

I. INTRODUCTION

Climbing robots have many real world applications,
such as high-rise window cleaning [1], HVAC main-
tenance, and vertical confined space rescue missions.
Multi-limbed robots are especially adept at climbing
tasks due to their added degrees of freedom from each
additional limb. In general pure Coulomb friction end
effectors are insufficient for maintaining robots on ver-
tical surfaces. As a consequence numerous types of end
effectors have been researched: suction cups [1], gecko
feet material [2], magnets [3], microspine [4], claws [5]
etc. These special end effectors cause problems, such
as extra weight, power consumption, and extended end
effector engagement time.

On the other hand, if a large enough normal force
is applied, a robot can vertically climb with pure
Coulomb friction end effectors, as seen in Fig. 1. This
would eliminate aforementioned issues associated with
special end effectors while introducing better dynamic
properties. With two parallel walls a multi-limbed
robot can generate a large enough normal force to climb
by either bracing between walls or gripping the walls
between its limb, i.e. two-wall-climbing.

For vertical climbing, the robot’s full body model is
essential to determine failure modes. One difficulty in
modeling multi-limbed vertical climbing robots with
position controlled joints is that the reaction forces
are statically indeterminate [6], [7], i.e. they cannot
be completely determined by the static equilibrium
equations when the robot makes more than 3 contact
points on the environment. To calculate the contact
force completely, one needs to consider the deformation
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Fig. 1: Hexapod Robot climbing vertically with pure
Coulomb friction end effectors (shown in the circular
close-up view) by bracing between two flat walls. The
width of it fully stretches out is larger than the distance
between walls, creating an imposed deformation.

of the robotic system. This is especially true for two-
wall-climbing robots, since the normal reaction forces
are mostly statically indeterminate.

In wall-climbing motion planning literature, Mad-
hani et al. applied standard linear programming meth-
ods to solve the linear static equilibrium equation for
contact forces, leaving the statically indeterminate part
of forces as a free parameter to optimize over [8],
[9]. Bretl et al. investigated the feasible polyhedron for
contact points and the center of mass with which the
contact forces satisfy static equilibrium and friction
cone constraints [10]. This line of work does not explic-
itly model the static indeterminacy. Instead these tech-
niques show the existence of deformation by providing
a solution space for the contact forces. Unfortunately,
it cannot give any insight on how to physically achieve
those forces, making it hard to implement on actual
robots.

This can be rectified by solving for the statically
indeterminate part of the force. To calculate this part
of the force we used additional equations provided
by the robot body deformation, which can be rep-
resented by its stiffness. The techniques of modeling
the complete stiffness of robotic systems are studied
in the field of industrial manipulators [11], [12], [13],
which can be roughly divided into three categories [14]:
(i) the Finite Element Analysis (FEA), (ii) the Matrix
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Structural Analysis (MSA), and (iii) the Virtual Joint
Method (VJM). The FEA method is the most accurate
but computationally intensive, making it difficult to
apply online [15]. The MSA method simplifies the
manipulator structure into beams, and the VJMmethod
lumps manipulator compliance into joint compliance.
In [16] Gao et al. explore using MSA to model the

limb stiffness and calculates the whole body stiffness
for a multi-limbed mobile robot. MSA results in com-
plicated expressions. A series of system identification
techniques are usually conducted to retrieve accurate
parameters [17]. This makes it non-trivial to imple-
ment.
This paper proposes to treat each limb of a multi-

limbed robot as a manipulator and adapt the compu-
tationally effective VJM manipulator stiffness modeling
technique [11] to model the stiffness of each individual
limb. The sum of each limb’s stiffness can sufficiently
represent the whole body deformation. The required
statically indeterminate forces are thus solved such that
a multi-limbed robot would know exactly how much
force it should exert in order to stay in place or climb.
The proposed technique is validated by using a position
controlled hexapod robot equipped with pure friction
end effectors to vertically climb by bracing between
walls, as shown in Fig. 1.
This paper makes the following contributions:

1) A technique that explicitly models and solves the
statically indeterminate forces based on a multi-
limbed robot’s whole body stiffness.

2) A method to determine the feasibility for climbing
between two walls with a pre-programmed gait.

3) A new multi-limbed robot locomotion is generated
to produce large normal forces on the limbs to
enable its vertical climbing with pure friction end
effectors. The idea of “squeezing” the robot between
walls to climb can be seen in previous robots (e.g.
[18], [19]). But this paper presents the first example
in terms of multi-limbed robot climbing gait.

The rest of the paper is organized as follows. Section
II describes the multi-limbed robot platform used for
the experiment in this paper and the derivation of
the stiffness matrix for individual limbs and for the
whole body. Section III shows the failure analysis and
development of feasible climbing regions. The exper-
iments in Section IV validate the proposed modeling
and feasibility analysis by enabling the robot to climb
vertically between walls. Two failure modes, slide and
over-torque, are analyzed in this section as well. Section
V concludes the work.

II. WHOLE BODY STIFFNESS MODELING

This section first describes the configuration of the
hexapod robot platform developed. Then we derive the
stiffness matrix of one of the robot’s limbs. Lastly, we
show how the whole body stiffness is obtained from
individual limb stiffness.

Fig. 2: Hexapod robot body dimension and position

A. Robotic Platform

The robotic platform used in this study is a hexapod
design with a central body frame and 6 limb assem-
blies, as shown in Fig. 2. The central body frame con-
sists of aluminum brackets interconnected with carbon
fiber tubes. Each limb has 3 degrees of freedom and
consists of a coxa, an upper femur, and a lower tibia
assembly. The tibia and femur assemblies are made
with carbon fiber tubes and are connected by a dual
motor assembly.
Thirty-six MX-106 motors have been used in pairs

for actuation. The stall torque for each motor pair
is approximately 25.0 Nm. The robot carries its own
battery, computer, and IMU. It weighs 10.3 kg. The
robot’s end effectors are covered by 60 grit sand paper
to enhance friction. The parameters of the robot are
summarized in Table I.
For multi-limbed robots like this one, most of the

compliance is from the limbs as they usually have
“open” serial structures, while the body is a “closed”
parallel structure. Thus it is safe to assume the robot
body to be rigid, and the whole body stiffness matrix
can be computed with each limb’s stiffness matrix.

B. VJM for a Limb Stiffness

We derive the limb’s stiffness matrix in Cartesian
space using VJM as done by [11]. The stiffness matrix
describes the spring-like behavior of the robot’s limb,
assuming the shoulder is fixed with a force exerted on
the end effector and each joint angle is regulated by
position control. The mathematical definition of the 3D
stiffness matrix is given by:

f =KδX (1)

where δX is the tiny shift in position at the end effector
due to limb deformation, and f is the reaction forces

TABLE I: Robot Configuration
Parameter Value

Degree of Freedom for Each Limb 3
Limb Coxa Length 57 [mm]
Limb Femur Length 195 [mm]
Limb Tibia Length 375 [mm]

Weight 10.3 [KG]
Motor Proportional Gain P 12

Motor Integral Gain I 0
Motor Derivative Gain D 0

Max Torque 25 [Nm]
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on the end effector. Note that the definition is based
on the fact that there is a fixed-end constraint on the
limb shoulder, which is consistent with the mechanical
design (Fig. 2).
For position controlled motors, if the motor position

is regulated with only a Proportional (P) gain, the joint
behaves like a torsional spring, whose spring constant
is proportional to motor’s P gain. For the P gain used
for climbing, the robot structures are considered rigid,
and the majority of the limb compliance can be lumped
into the joint compliance.
Given a robot limb that has N degrees of freedom

with point contact only (no torque exerted on end ef-
fector), the standard Jacobian matrix J is a 3×N matrix.
If the deformation of the robot limb is small enough,
one can assume that the deformation is linear elastic.
Thus the relationship between linear deflection on the
end effector and the rotational deflection (similar to the
rotation angle of a torsional spring) on each joint is:

δX = Jδθ (2)
where δθ is the rotational deflection on each joint.
The relationship between reaction forces on the end

effector and the resultant torque on each motor is:
τ = JT f (3)

If the P-controlled motors are modeled as torsional
springs with spring coefficient kis, the motor rotational
deflection angles are:

δθi =
τi
ki
, i =1...N (4)

or

δθ =k−1τ (5)

where:
k= diag(ki ), i =1...N (6)

Therefore, from equation 2, plugging in equation 5
and 3, and then comparing it with equation 1, we have:

K= (Jk−1JT )−1 (7)

Note that the stiffness matrix from equation 7 will
be symmetric and positive definite.

C. Whole Body Stiffness

In this subsection, the whole body stiffness matrix is
assembled.
When a multi-limbed robot is climbing between 2

walls quasi-statically, each pose may be analyzed in two
states. State 1: a human is holding the robot body while
the its limbs stretch out to its commanded position
with no wall contact. State 2: the wall is pushed in to its
position and the human releases the robot’s body. The
difference between the commanded end effector posi-
tion and the wall’s position deforms the robot’s limbs,
and the body’s center of mass has a deflection, e.g. the
sag-down due to gravity. This causes the coordinate
system attached to the body’s center of mass to shift

Fig. 3: Diagram of limb deformation. The upper half
shows the forces and deformations of the robot bracing
between walls. The dashed line shows state 1, while the
solid line shows state 2. The enlarged view shows the

deformation of the robot limb, where
−−→

CE represents

state 1,
−−−−→

C ′W represents state 2, and
−−−−→

C ′E′ represents
state 3.

and rotate by a small amount, from XYZ to X ′Y ′Z ′ .

This physical process is depicted in Fig. 3, where
−−→

CE

represents state 1,
−−−−→

C ′W represents state 2.

From standard elasticity theory, the movement from
state 1 to state 2 contains two components: one due
to rigid body movement (translation and rotation) and
the other due to deformation. For this reason, the wall
movement does not equal to the amount of deformation
for limbs. To depict the correct deformation vector, we
need to get rid of the rigid body movement portion.
To do so, state 3 is introduced, which starts from state
2 but removes the wall while keeping the body fixed,

depicted by
−−−−→

C ′E′ . State 3 is a transition state which
releases all the deformation, so that the movement from
state 1 to state 3 only contains rigid body motion. Let

the translational part of it be from
−−→

CE to
−−−−→

C ′E′′ , and the

rotational part be from
−−−−→

C ′E′′ to
−−−−→

C ′E′ . Denote body’s
center of mass deflection by δCM = [δdCM ,δθCM ]T , in

which
−−−→

CC ′ =
−−−→

EE′′ = δdCM is the small displacement
and δθCM is the small rotation. The wall-imposed
deflection on limb i is denoted by δi wall , which is a
known input. From state 1, if we first move the limb
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in parallel along δdCM to get
−−−−→

C ′E′′ , then rotate it to

get
−−−−→

C ′E′ , we reach state 3. Then the wall deforms E′

by δi def orm to reach W (state 2). Therefore δi def orm is
the correct deformation vector for limb i, resulting in:

f
i
=Kiδi def orm, i =1...N (8)

Note this equation assumes the limb is subject to a
fixed-end constraint at its shoulder, which is consistent
with the way stiffness matrices are defined in Section
II.
From Fig. 3:

δi def orm = δi wall −δi rigid , i =1...N (9)
Wall motion δi wall is a known input. To get δi def orm,

we seek an expression for δi rigid . Let Rd be the rotation
matrix from frame XYZ to frame X ′Y ′Z ′ . Then the end
effector displacement due to body rotation is

−−−−→

E′′E′ =

Rdr i −r i , where r i = [xi , yi , zi ]
T =
−−−−→

C ′E′′ . Then we have:

δi rigid = δdCM +Rdr i −r i , i =1...N (10)

When the rotation angles in δθCM are infinitesimal,
it can be shown [20] that Rd may be represented to the
first order as:

Rd =



















1 −δθCMz
δθCMy

δθCMz
1 −δθCMx

−δθCMy
δθCMx

1



















(11)

Where δθCM = [δθCMx
,δθCMy

,δθCMz
]T . Note this

matrix is first order unitary.
Plugging equations 11 and 10 into equation 9:

δi def orm = δi wall − [I P
T
i ]δCM , i =1...N (12)

where:

Pi =

















0 −zi yi
zi 0 −xi
−yi xi 0

















(13)

And by equation 8 the reaction force on the end
effector is:

f
i
=Ki (δi wall − [I P

T
i ]δCM ), i =1...N (14)

The static equilibrium equations are:

N
∑

i=1

f
i
+Ftot =0 (15)

N
∑

i=1

(r i × f i
)+M tot =0 (16)

Where Ftot is the total load force and M tot is the total
load torque.
Plug equation 14 into equation 15 and 16 to get

AδCM =

[

Ftot
Mtot

]

+

N
∑

i=1

[

Kiδi wall
PiKiδi wall

]

(17)

Where:

A=

N
∑

i=1

[

Ki KiP
T
i

PiKi PiKiP
T
i

]

(18)

is the whole body stiffness matrix. Equation 17 relates
the body’s center of mass deflection to its loading,
plus a deformation input describing the effect of the
imposed wall deflection.
As a result, the complete stiffness model can be

summarized by equation 7, 13, 14, 17, and 18.
Compared to previous works, especially [16] and

[21], VJM, instead of MSA, is adopted to model the limb
stiffness. Mobile robots tend to operate in uncertain
environment and don’t require high precision control.
VJM method, although less accurate than MSA, models
much faster, expediting its implementation. Addition-
ally, the deformation input δi def orm is introduced as
the difference between commanded end effector posi-
tion and wall position. The robot’s limb can actively
change δi def orm by changing its commanded position
to avoid failure.

III. Feasibility Analysis For Pre-programmed

Climbing Gait

Based on the model developed in Section II, A
method is developed to determine feasible wall-
distances for the robot to climb with a pre-programmed
gait. In more complicated wall profiles, we can plan the
robot’s wall-imposed deformation δi wall to compensate
for wall distance changes.
To conduct vertical wall climbing, the robot must

go through a series of postures. For quasi-static climb-
ing, one can analyze each bracing posture separately
to determine failure. We identify two failure modes
for climbing depending on the imposed deformation
δi wall . If δi wall is too large, i.e. the robot pushes into
the wall too hard, it over-torques the motor, but an
insufficient amount of δi wall results in sliding. As it is
unnecessary to analyze each frame, we pick a few key
failure frames, calculate their two failure modes, and
connect them into complete failure curves.
For typical multi-limbed wall climbing gaits, the

robot moves its body up with all limbs attached to the
wall. This is because the body usually takes majority of
the robot’s weight. The more limbs in contact with the
wall, the safer the engagement will be when shifting
the body. Therefore, the robot initially picks up a few
limbs, and puts them at higher positions on wall Then
it pushes its body up, and picks up other limbs and iter-
ates. This process is exhibited in Fig. 4, where the robot
takes a tripod gait (picks up three legs each time) and
climbs up. The upper diagram in Fig. 4 demonstrates the
method for analyzing feasibility for the given tripod
gait. Along the continuous configurations, we pick key
failure frames to be: A, B, C, D, E and F. For each
key frame, the reaction force on end effector has to lie
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Fig. 4: Feasible region analysis for pre-programmed
gait. Upper diagram: The robot slides when the wall
distance is above the sliding failure curve, generated
with coefficient of friction µ around 0.7. The motor
over-torques when the wall distance is below the over-
torque failure curve. The green region shows the fea-
sible climbing wall distance. The black line shows a
wall profile that the robot succeeds in climbing for
the given gait. The magenta line shows a wall profile
that the robot fails to climb. The dotted curves are
critical failure curves. Lower diagram: A series of robot
configurations as the robot climbs up, visualized in
MATLAB. The black arrows show gravity and the red
arrows show the end effector reaction force. From point
A to B, the robot slowly pushes its body up. At point
C, the robot picks up three limbs. At point D, the robot
put three limbs back on wall. At point D to E, the
robot further pushes its body up. At point F, the robot
picks up the other three limbs. The letters in the lower
diagram correspond to those in the upper.

within the friction cone for the robot not to slide. This
constraint can be written as:

f
i
∈Fi (19)

where Fi represents the feasible set of contact force.

The over-torque constraint can be written as:

JT f < τmax (20)

Setting δi wall = (RobotWidth−WallDistance)/2, with
RobotWidth fixed, the over-torque/slide points are
retrieved by decreasing/increasing the wall distance
and then calculating the reaction force by equation
7, 13, 14, 17, and 18, until constraint 20 for over-
torque, or constraint 19 for sliding, is violated. By
doing so, we retrieve the key frame failure wall distance
WallDistancemin for over-torque, and WallDistancemax

for slide.
Lastly, the key frame failure wall distances are con-

nected to generate the complete curves, as shown in
the upper diagram in Fig. 4. The x axis doesn’t have
any physical meaning, it is just stacking a series of
postures together. The y axis is the wall distance. From
point A to point B, the robot raises its body, that the
compliance of body changes continuously, since the
moment arm of contact force changes. This results in a
continuous change of failure curves. Since only A and
B are analyzed, they are simply connected linearly. At
point C, the robot picks up three legs. This causes a
sharp change of failure curves, leading to the weakest
failure point of the gait.
The actual wall profile must stay below the sliding

failure curve for the robot not to slide and above
the over-torque failure curve for the motors not to
over-torque. This generates a feasible region along the
posture axis as the robot climbs up, represented as the
green region shown in Fig. 4. The actual wall profile
can be plotted on top of it to determine feasibility. The
black line shows a wall profile with a constant distance
that completely stays within the feasible region, mean-
ing the robot can successfully climb.
However, as the robot climbs up, it may encounter

wall profiles that go out of the feasible region, pro-
ducing a failure. This is shown in Fig. 4 upper diagram
with the magenta curve, where the motor over-torques
at point O. One way to tackle this failure is to plan
RobotWidth according to wall profile, instead of us-
ing a fixed RobotWidth. For example, the robot may
decrease its RobotWidth at point O. This effectively
changes the wall distance that is “seen” by the robot,
redirecting it into the feasible region.
Finally, if two curves cross over each other, the climb-

ing is strictly infeasible. This can happen when the
coefficient of friction is too low or when the maximum
torque for the motor is too weak.
Since wall climbing is a highly dangerous task, and

some factors (e.g. coefficient of friction) are hard to
measure precisely, getting the safety factor for a given
climbing motion plan is essential. Using the proposed
feasibility diagram, one can also get the climbing safety
factor with respect to the coefficient of friction and
the motor’s maximum torque. The safety factor with
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respect to the coefficient of friction, Sµ, can be retrieved
by gradually lowering µ from the nominal value (so
the sliding failure curve will drop), until a value µc
which makes climbing critically feasible. This defines
the sliding critical failure curve, shown in the upper
diagram in Fig. 4 by dotted blue curve. The sliding
safety factor is Sµ =µ/µc. Similarly, safety factor with
respect to the motor’s maximum torque, Sτ , can be
retrieved by gradually lowering τmax from the nominal
value to get over-torque critical failure curve (shown
in the upper diagram in Fig. 4 by dotted red curve) and
critical failure torque τc. Thus Sτ = τmax/τc. In Fig. 4,
µc =0.34, τc =24.75 are retrieved, thus Sµ =2.06 and
Sτ =1.01 for the given tripod climbing gait.
To conclude, we generate the feasibility diagram for

the two-wall-climbing problem, based on the model
developed in Section II. The feasibility diagram can
tell if climbing is feasible with a given RobotWidth,
feasible with properly planned RobotWidth, or strictly
infeasible. The diagram can be utilized to plan the mo-
tion for a class of different vertical climbing problems,
such as climbing by grasping two vertical surfaces
between its legs e.g. climbing up trees or lamp-posts.
It is worth mentioning that as the robot moves, the

position of center of mass will change due to the change
of mass distribution. For the purpose of analysis, this
can be taken care of by recalculating the center of
mass position for each key failure frame, and using its
correct values in equation 13, 17 and 18.

IV. EXPERIMENTS

A. Verification of Stiffness Model

The general process of model verification is to reg-
ulate the imposed deformation δi wall and observe the
outputs: body sag-down δdCM and reaction force f

i
on the end effector. The experiment is designed to
have the robot brace between two rigid walls, shown
in Fig. 5, by varying the distance between walls while
keeping the end effector position fixed on the wall. The
end effector touching point on the wall is fixed and
labeled. This controls the limb configuration the each
time the experiment is conducted. One ROBOTOUS
RFT60-HA01 six-axis force torque sensor is installed
on the wall to measure f

i
directly, shown in Fig. 5. The

measurements are taken iteratively from front/back
limbs. To retrieve δdCM , the joint encoder values before
and after the deformation are recorded, and δθ is
computed. Then the limb deformation δX with respect
to the body is calculated by equation 2, from which
body shifting δdCM can be retrieved.
On the other hand, Code is developed in MATLAB

to calculate the model. To compare the calculations
with experiments, virtual robot on virtual walls is setup
in the code to match the experiment. The result is
visualized by plotting the robot, the wall, and the
reaction force contact points. The calculation outputs
δdCM and f

i
are verified against experiments.

Fig. 5: Setup of Wall Bracing Test

Fig. 6: Experiment results. Each set of test is done
for 12 times. The blue star draws the result calcu-
lated by model. The red error bar plots the mean and
the 2-sigma bound. The Wall Distances are 1080mm,
1150mm, and 1200mm, and δi wall are 30mm, 20mm
and 65mm respectively. The definition of sprawl angle
is given in Fig. 2. In plot title “3 Legs” means 3 legs
are on the wall corresponding to Fig. 4 diagram C.

Nine sets of tests with the hexapod under differ-
ent configurations, different wall distances, different
imposed deflection, and different number of legs on
the wall, are conducted. In all tests, the robot body’s
initial pose is kept parallel to the ground. For each test,
the wall’s distance is within feasible bracing region.
Experimental data FN and δZ from the front and back
limbs, the component of f

i
normal to the wall and the

vertical component of δdCM along gravity direction, are
plotted in Fig. 6. We only plot FN since it is statically
indeterminate, which highlights the most important
feature of this model.

The joint sprint constant kis can be found from the
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Fig. 7: Instances of climbing between walls. The upper
three figures are climbing with tripod gait at t=0, t=25
and t=50 seconds, respectively. The lower three figures
are climbing with ripple gait at t=0, t=10 and t=80
seconds, respectively. The wall distance is 1190mm for
tripod and 1160mm for ripple.

ROBOTIS dynamixel 106 e-manual [22] (experimen-
tally verified). One feature of VJM is that, although
only joint compliance is considered, one can account
for structural compliance by lumping it onto joint
compliance. Based on our work of identifying total
compliance [23], we add 25% to the nominal sprint
constant to produce the theoretical predictions in Fig.
6. The experimental results mostly follows the calcu-
lated results. Mobile robots are uncertain in nature,
the calculated deformation is subject to errors such as
non-ideal contact point geometry, motor backlash, un-
modeled compliance, large deflection non-linearity, etc.
However, this model captures the governing physics
during its bracing posture, and predicts the correct
normal force that can be used to determine failure.
Testing the total compliance for a limb requires extra

setup and possibly detaching a limb. Part of the struc-
tures from our robot is thin, causing an non-negligible
structural compliance. If the structure is rigid enough,
VJM based methods eliminate the need to identify
total compliance and can expedite the implementation
process of mobile robots.

B. Verification of Climbing

1) Climbing with different wall distances: ‘To ver-
ify the feasibility analysis in Section III, we conduct
two more robot climbing tests with WallDistance =
1230mm, and WallDistance =1050mm, respectively.
The coefficient of friction on the wall relative to the
robot’s end effector is around 0.7. The climbing gait
picked to conduct this set of test is the tripod gait. The
robot’s RobotWidth is set to be 1300mm and 1135mm,
and the feasibility region diagram for each BodyWidth
is generated based on the method developed in Section
III. The instances of robot climbing and the associated
feasible region diagrams are plotted in Fig. 8.
As the analysis shows, the robot will succeed in

climbing on a wall in both tests. The climbing test

Fig. 8: Instances of climbing between walls
with different wall distances. Left column:
WallDistance=1230mm and RobotWidth=1300mm,
picture taken at t=0 and t=20sec. Right column:
WallDistance=1050mm and RobotWidth=1135mm,
picture taken at t=0 and t=20sec. The black lines show
the wall distance.

validates this result, as we are able to make the robot
climb up.

It is worthwhile to mention here that if the robot just
uses an open-loop pre-programmed gait, its body tends
to shift and tilt as it climbs up. This causes the climbing
to be more prone to failure, because tilting causes
the left and right limbs to be asymmetric, thus the
limbs on one side may become much more compliant
than the ones on the other side. To compensate for
the tilting, each time the robot makes one step, it
takes the Euler angle feedback from an IMU. On top
of that, a PID controller is designed to regulate the
posture. If a posture error is induced as the robot picks
one limb, the robot actively changes its posture, such
that when it puts the limb back on wall, it is still
at the desired position. The body posture regulator
considerably enhances the reliability of the two-wall
climbing.

2) Climbing with different gaits: Climbing with differ-
ent gaits is also studied. We pick two pre-programmed
gaits: ripple (picks up one limb each time), and tripod
(picks up three limbs each time). The test is conducted
on the two walls with fixed distance, and the coefficient
of friction is around 0.7. The feasibility diagram for
ripple gait is shown in Fig. 9, for tripod is shown in Fig.
4. The fixed wall distance is depicted on the diagram.
As one can tell from the diagram, in both cases the
climbing is feasible. However, ripple gait has five limbs
on the wall as the robot makes a step, thus the feasible
region for ripple gait is much larger than feasible
region for tripod gait, resulting in a larger safety factor.
In fact, the safety factors are Sµ =2.41 and Sτ =1.10 for
the given ripple climbing gait, which is considerably
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Fig. 9: Feasible climbing region for ripple gait. Only
first two steps are shown, since the rest repeats. The
black line shows the wall distance. The sliding critical
failure curve is achieved at µc =0.29 and the over-
torque critical failure curve is achieved at τc =22.73.

higher than that of the given tripod gait (provided in
Section III). This is demonstrated through experiments.
We are able to successfully conduct vertical climbing
with both gaits, but ripple gait has a significantly lower
chance to fail than the tripod gait. The results are
pictured in Fig. 7 and are shown in the attached video.

V. Conclusion

This paper constructs a modeling technique based on
stiffness matrix for calculating the reaction force and
body deformation which explicitly takes into account
the statically indeterminate force. With this unique
feature, we propose a two-wall climbing approach as
an extension for the multi-limbed robot locomotion
method. Two failure modes: slide and over-torque, are
identified. A method to compute the feasible climbing
region is proposed. We verify the accuracy of modeling
technique by experimentation. The computed feasible
climbing region is also verified via experiments at dif-
ferent wall distances and different climbing gaits. The
results show that the model captures majority physics
for posturing the robot on wall, and the computed
feasible region gives a good prediction indicating the
success of a climb.
Future works may include extending the proposed

two-wall climbing approach to other practical imple-
mentations such as climb up and down on trees, lamp
posts, pipes, wells, and so on. This locomotion method
can also be favorable for applications under low gravity
environments, for instance those on Moon/Mars, where
it becomes more efficient.
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